

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

SYLLABUS								
	SIGNATURE COURSE							
Name of the College	B.C.M. College, Kott	C.M. College, Kottayam						
Faculty/ Discipline	Chemistry							
Programme	BSc (Hons) Chemist	ry						
Course Coordinator	Dr. Mamatha Susan	Punnoose						
Contributors	Dr. Mamatha Susan	Punnoose						
Course Name	Introduction to Nan	omaterials						
Type of Course	DSE	DSE						
Specialization title	Principles and Appli	cations of Nanos	science					
Course Code	To be prepared by t	he University						
Course Level	200							
Course Summary	This course provide background, classifi chemical and physic nanomaterials.	s a foundational cation, unique p cal methods of s	understanding of properties, and syr ynthesis, as well a	nanomaterials, ind othetic methodolog as the principles of	cluding their histo gies. Emphasis is green chemistry	orical placed on both applied to		
Semester	3		Credits		4	Total Hours		
Course Dotails	Learning	Lecture	Tutorial	Practical	Others			
	Approach	4				60		
Pre-requisites, if any								

Course Outcomes (CO)

	Number of COs	6			
CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Understand the historical development and significance of nanomaterials	U	PO1, PO2, PO3		
2	Explain the classification of nanomaterials based on their dimensional structures	E	PO1, PO2, PO3		
3	Evaluate the unique properties of nanomaterials compared to bulk materials	E	PO1, PO2		
4	Describe and analyse various chemical and physical methods for synthesizing nanomaterials	AN	PO1, PO2, PO3, PO10		
5	Discuss and apply the principles of green chemistry to the synthesis of nanomaterials	А	PO1, PO6, PO7, PO10		
6	To understand the applications of nanomaterials in daily life	U	PO6, PO7		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	2	3	-	-	-	-	-	-	-
CO 2	2	2	2	-	-	-	-	-	-	-
CO 3	3	3	-	-	-	-	-	-	-	-
CO 4	3	3	3	-	-	-	-	-	-	1
CO 5	3	-	-	-	-	3	3	-	-	1
CO 6	-	-	-	-	-	2	2	-	-	-

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.			
	Introduction and properties of nanomaterials						
	1.1	Historical background and significance of nanomaterials	2	["1"]			
1	1.2	Overview and definition of nanomaterials, Richard Feynman's hypothesis	3	["1"]			
	1.3	Classifications and Types of Nanomaterials- 1D,2D,3D	4	["2"]			
	1.4	Unique Properties of Nanomaterials- metal and metal oxide nanomaterials, concept of bulk versus nanomaterials, size and shape dependent properties, quantum effect, surface area to volume ratio and reactivity.	10	["3"]			
	Synthe	tic Methodologies of Nanomaterials					
	2.1	Top-Down Approaches: Definition, advantages, and limitations	4	["4"]			
2	2.2	Bottom-Up Approaches: Definition, advantages, and limitations	4	["4"]			
	2.3	Chemical Synthesis Methods- Sol-Gel Method, Hydrothermal Synthesis, micro emulsion technique, chemical reduction, chemical vapor deposition, physical vapor deposition.	10	["4"]			
	Nanom	aterial synthesis-Physical & Green strategies	-				
3	3.1	Physical Methods of Nanomaterial Synthesis- mechanical milling, laser ablation, sputtering, arc-discharge method, photolysis, radiolysis, microwave and ultrasound assisted synthesis	8	["4"]			
	3.2	Green Chemistry and Nanomaterials- Definition and overview of green chemistry, atom economy, twelve principles of green chemistry, concept of green solvents	6	["5"]			

Module	Units	Course Description	Hrs	CO No.
	Applica	ations of nanomaterials		
	4.1	Nanomaterials in electronics and energy : sensors, solar cells, batteries, supercapacitors	3	["6"]
4	4.2	Nanomaterials in medicine and health care : drug delivery systems, cancer therapy and antibacterial coatings	3	["6"]
	4.3	Synthesis of metal oxide nanoparticles (ZnO, CuO) by chemical route (any one method)	3	["6"]

Teaching and Learning	Iassroom Procedure (Mode of transaction)
Approach	Ik & board method, multimedia presentation, group discussion, peer
Lecture involving cha	teaching, hands on experiment

	MODE OF ASSESSMENT Mode of Assessment: Theory
	A. Continuous Comprehensive Assessment (CCA) • Theory – 30 Marks Assignments , MCQ, Viva, Involvement in classroom activities, Experiential learning
Assessment Types	B. End Semester Evaluation (ESE) • Theory - 70 Marks Assessment Methods - Written examination Duration of Examination - 2.00 Hrs Pattern of examination for Theory - Non-MCQ Different parts of written examination - Part - A , B , C Answer Type: • PART - A • MCQ - (10 out of 10) - 10 × 1 = 10 • PART - B • Short answer - (6 out of 9) - 6 × 5 = 30 • PART - C • Short Essays - (2 out of 4) - 2 × 15 = 30

References

 1. Pradeep, T. A Textbook of Nanoscience and Nanotechnology. Tata McGraw-Hill Education, 2012. 2. Ahluwalia, V. K. Green Chemistry. Narosa Publishing House, 2011. 3. Shah, M. A., and Tokeer Ahmad. Principles of Nanoscience and Nanotechnology. Narosa Publishing House, 2010. 4. Cao, Guozhong, and Ying Wang. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. World Scientific Publishing, 2011. 5. Vollath, Dieter. Nanomaterials: An Introduction to Synthesis, Properties and Applications. John Wiley & Sons, 2013. 6. Kulkarni, Sulabha K., and Jayant K. Kulkarni. Nanotechnology: Principles and Practices. Springer, 2014. 7.Rao, C. N. R., Achim Müller, and Anthony K. Cheetham. The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Wiley-VCH, 2004.

- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, retain the copyright of this syllabus and expressly prohibit its distribution in complete form to any institution outside our own.
- We, B.C.M. College, Kottayam, agree to appoint a new course coordinator for the proposed Principles and Applications of Nanoscience in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the

successful implementation of the specialization, for as long as the college offers this programme.

• We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

© Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, India - 686560 05/07/2025, 10:41:23 AM | Page 4

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

SYLLABUS								
	SIGNATURE COURSE							
Name of the College	B.C.M. College, Kott	ayam						
Faculty/ Discipline	Chemistry							
Programme	BSc (Hons) Chemist	ry						
Course Coordinator	Dr. Mamatha Susan	Punnoose						
Contributors	Dr. Sr. Remya Simo	n, Ms. Ann Maria	Binoy					
Course Name	Characterization tee	Characterization techniques for Nanomaterials						
Type of Course	DSE	DSE						
Specialization title	Principles and Appli	cations of Nanos	cience					
Course Code	To be prepared by t	he University						
Course Level	200							
Course Summary	This course explore of nanomaterials, w understanding of ac nanomaterial applic	s the principles a ith a specific foc lvanced characte ations in biologic	and methodologie us on their biosaf erization techniqu cal and environme	s involved in the c ety implications. S es and the regulat ental contexts.	haracterization a tudents will gain ory frameworks	nd assessment an governing		
Semester	4		Credits		4	Total Hours		
Course Dotails	Learning	Lecture	Tutorial	Practical	Others			
	Approach	4				60		
Pre-requisites, if any								

Course Outcomes (CO)

	Number of COs	5		
CO No.	Expected Course Outcome	Learning Domains *	PO No	
1	Understand the principles underlying UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR)	U	PO1, PO2	
2	Apply spectroscopic techniques to analyze nanoparticles using Raman spectroscopy and X-ray Diffraction spectroscopy	AN	PO1, PO2, PO3	
3	Understand and analyse the principles of Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)	AN	PO1, PO2, PO3	
4	Characterization of zinc oxide, copper oxide, silver, and gold nanoparticles using electron microscopic techniques	S	PO1, PO2, PO3	
5	To understand the principles of Nanotoxicology	AN	PO1, PO6, PO7	

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	-	-	-	-	-	-	-	-
CO 2	3	2	2	-	-	-	-	-	-	-
CO 3	3	2	2	-	-	-	-	-	-	-
CO 4	3	2	2	-	-	-	-	-	-	-
CO 5	1	-	-	-	-	2	3	-	-	-

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	ts Course Description					
	Spectral Characterization Techniques						
	1.1 Principles of UV-Visible spectroscopy						
1	1.2 Principles of Fourier Transform Infrared Spectroscopy (FTIR)		5	["1"]			
	1.3	Principles of Raman spectroscopy	4	["2"]			
	1.4	Principles of X-ray Diffraction spectroscopy	4	["2"]			
	Electro	n Microscopic Techniques-I					
 	2.1 Introduction and Principles of Electron Microscopic techniques						
2	2.2	Principles of Scanning Electron Microscopy (SEM)	5	["3"]			
	2.3 Instrumentation of SEM		5	["3"]			
	Electron Microscopic Techniques -II						
2	3.1	Using electron microscopic techniques-Scanning Electron Microscopy (SEM)	6	["3"]			
	3.2	Principles of Tunneling Electron Microscopy (TEM)	5	["3"]			
	3.3	Characterization of zinc oxide, copper oxide, silver and gold nanoparticles.	6	["4"]			
	Nanoto	exicology and Biosafety of Nanomaterials					
	4.1	Mechanisms of nanomaterial toxicity- In vitro toxicity assays, Cell viability assays, Genotoxicity assays.	4	["5"]			
4	4.2	Inflammatory Response- Understanding and measuring the inflammatory effects of nanomaterials in living organisms.	4	["5"]			
	4.3Analyze UV spectrum of nanomaterials.4						

Teaching	and	Learning
Ар	proa	ch

Classroom Procedure (Mode of transaction)

Lecture involving chalk & board method, multimedia presentation, group discussion, peer teaching, hands on training

	MODE OF ASSESSMENT Mode of Assessment: Theory
	A. Continuous Comprehensive Assessment (CCA) • Theory - 30 Marks Assignments, MCQ, Viva, Involvement in classroom activities, Experiential learning
Assessment Types	B. End Semester Evaluation (ESE) • Theory - 70 Marks Assessment Methods - Written examination Duration of Examination - 2.00 Hrs Pattern of examination for Theory - Non-MCQ Different parts of written examination - Part - A , B , C Answer Type: • PART - A • MCQ - (10 out of 10) - 10 × 1 = 10 • PART - B • Short answer - (6 out of 9) - 6 × 5 = 30 • PART - C • Short Essays - (2 out of 4) - 2 × 15 = 30

References

1. Zhao, Yuliang, Guibin Jiang, and Jun-Jie Zhu. Characterization of Nanomaterials: Advances and Key Technologies. Springer, 2016. 2. Edelstein, A. S., and R. C. Cammarata. Nanomaterials: Synthesis, Properties, and Applications. CRC Press, 2001. 3. Kumar, Narendra, and Yashwant Pathak. Nanotoxicology: Materials, Methodologies, and Assessments. CRC Press, 2017. 4. Sahu, Saura C., and Daniel A. Casciano. Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology. John Wiley & Sons, 2014. 5. Wiesner, Mark R., and Jean-Yves Bottero. Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw-Hill Education, 2007.

- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, retain the copyright of this syllabus and expressly prohibit its distribution in complete form to any institution outside our own.
- We, B.C.M. College, Kottayam, agree to appoint a new course coordinator for the proposed Principles and Applications of Nanoscience in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

SYLLABUS						
		SIGNAT	URE COURSE			
Name of the College	B.C.M. College, Kott	ayam				
Faculty/ Discipline	Chemistry					
Programme	BSc (Hons) Chemist	ry				
Course Coordinator	Dr. Mamatha Susan	Punnoose				
Contributors	Dr. Sr. Remya Simo	n, Ms. Ann Maria	Binoy			
Course Name	Applications of Nand	ostructures in Na	nomedicine and	Agriculture		
Type of Course	DSE					
Specialization title	Principles and Appli	cations of Nanos	cience			
Course Code	To be prepared by t	he University				
Course Level	300					
Course Summary	This course explore agriculture. Student and agricultural pra	s the cutting-edg s will gain insigh ctices, focusing o	e applications of ts into how nano on both theoretica	nanostructures in technology is revo al concepts and pr	the fields of nand lutionizing medic actical applicatio	omedicine and al treatments ns.
Semester	5		Credits		4	Total Hours
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours
	Approach	4				60
Pre-requisites, if any						

Course Outcomes (CO)

	Number of COs	5			
CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Understand the principles underlying in the drug delivery systems and drug targeting strategies	U	PO1, PO2, PO3		
2	Understand and analyse the role of quantum dots and nanoparticles in diagnostics and imaging	AN	PO1, PO2, PO3		
3	Understand and analyse the role of nanoparticles in cancer therapy and regenerative medicine	AN	PO1, PO2		
4	To understand and analyse the role of nano-pesticides and nanofertilizers in enhancing the crop productivity	AN	PO1, PO2, PO3, PO7		
5	To understand and evaluate the soil properties and parameters for ensuring soil quality	E	PO1, PO7, PO10		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	2	1	2	-	-	-	-	-	-	-
CO 2	3	2	1	-	-	-	-	-	-	-
CO 3	3	1	-	-	-	-	-	-	-	-
CO 4	2	3	2	-	-	-	2	-	-	-
CO 5	3	-	-	-	-	-	2	-	-	2

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.				
	Drug d	elivery systems	•					
1	1.1	Basics of drug delivery, Introduction about drug delivery systems						
	1.2	Polymer and metal based drug delivery systems	4	["1"]				
	1.3	Drug targeting strategies for site specific drug delivery-passive and active targeting Time and rate controlled drug delivery	3	["2"]				
	Diagno	Diagnostics and imaging						
2	2.1	Quantum dots and magnetic nanoparticles for imaging, Biosensors and lab-on-a-chip technologies	5	["3"]				
	2.2	Biosensors and lab-on-a-chip technologies, Early disease detection and personalized medicine	5	["3"]				
	2.3	Nanoparticles in cancer therapy (photothermal therapy, chemotherapy	4	["4"]				
	Applications of Nanostructures in Agriculture							
	3.1	Definition and scope of nanotechnology in agriculture, properties of nanomaterials relevant to agriculture (size, surface area, reactivity)	6	["4"]				
3	3.2	Concept and advantages over conventional fertilizers, Types: macro- and micronutrient nano- fertilizers, Mechanisms of nutrient release and plant uptake, Case studies and field trials using nano-fertilizers	7	["4"]				
	3.3	Controlled delivery and targeted action, Reduced environmental impact and improved efficacy, Formulation techniques and application methods Safety, regulation, and toxicity concerns	8	["4"]				
	Nanost	ructures in Plant Disease Management						
	4.1	Nano-based diagnostics: biosensors for early disease detection, Antimicrobial nanomaterials (e.g., silver, zinc oxide)	5	["5"]				
4	4.2	Nano-encapsulation for controlled release of agrochemicals, Nano-enabled vaccines and immunity boosters for plants	5	["5"]				
	4.3	Current research trends in nano-agriculture, Preparation of nano-formulations for pesticides and fertilizers	5	["5"]				

Teaching and Learning Approach

Classroom Procedure (Mode of transaction)

Lecture involving chalk & board method, multimedia presentation, group discussion, peer teaching, experimental demonstrations and practical training in laboratory

	MODE OF ASSESSMENT Mode of Assessment: Theory
	A. Continuous Comprehensive Assessment (CCA) • Theory - 30 Marks Assignments, MCQ, Viva, Involvement in classroom activities, Experiential learning
Assessment Types	B. End Semester Evaluation (ESE) • Theory - 70 Marks Assessment Methods - Written examination Duration of Examination - 2.00 Hrs Pattern of examination for Theory - Non-MCQ Different parts of written examination - Part - A , B , C Answer Type: • PART - A • MCQ - (10 out of 10) - 10 × 1 = 10 • PART - B • Short answer - (6 out of 9) - 6 × 5 = 30 • PART - C • Short Essays - (2 out of 4) - 2 × 15 = 30

References

 1.Sankar, V., and S. Ramesh. Textbook of Novel Drug Delivery Systems. BSP Books, 2022. 2.Chanda, Ranabir, Jyotirmoy, and Alugubelli Gopi Reddy. Textbook of Novel Drug Delivery System. AITBS Publishers, 2022. 3.Rockall, Andrea G., Andrew Hatrick, Peter Armstrong, and Martin Wastie. Diagnostic Imaging. John Wiley & Sons, 2013. 4.Putman, Chas, and Carl Ravin. Textbook of Diagnostic Imaging. 2nd ed., W.B. Saunders, 1994. 5.Cox, Joseph Frank. Crop Production and Soil Management. J. Wiley & Sons, Incorporated, 1925. 6.Bimbraw, Avtar Singh. Established and Emerging Practices for Soil and Crop Productivity. 1st ed., Kindle Edition, 2021. 7.Jayanthi, C. Text Book on Agronomic Management of Soil Productivity. Narendra Publishing House, 2019.

- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, retain the copyright of this syllabus and expressly prohibit its distribution in complete form to any institution outside our own.
- We, B.C.M. College, Kottayam, agree to appoint a new course coordinator for the proposed Principles and Applications of Nanoscience in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

SYLLABUS						
		SIGNAT	URE COURSE			
Name of the College	B.C.M. College, Kott	ayam				
Faculty/ Discipline	Chemistry					
Programme	BSc (Hons) Chemist	ry				
Course Coordinator	Dr. Mamatha Susan	Punnoose				
Contributors	Dr. Mamatha Susan	Punnoose				
Course Name	Nanomaterials for S	ustainable Ener <u>o</u>	ЯХ			
Type of Course	DSE					
Specialization title	Principles and Appli	cations of Nanos	cience			
Course Code	To be prepared by t	he University				
Course Level	300					
Course Summary	This course explore the synthesis, prope energy conversion, design principles an improve environme	s the role of namerties, and applic energy storage, d mechanisms b ntal compatibility	omaterials in adv ations of nanostr fuel cells, and hy y which nanomat y in energy syster	ancing sustainable uctured materials drogen production cerials enhance eff ms.	energy technolo in key areas such . Emphasis is pla iciency, reduce c	igies. It covers as solar ced on the osts, and
Semester	6		Credits		4	Total Hours
Course Dotails	Learning	Lecture	Tutorial	Practical	Others	
	Approach	4				60
Pre-requisites, if any						

Course Outcomes (CO)

	Number of COs	6		
CO No.	Expected Course Outcome	Learning Domains *	PO No	
1	Demonstrate an understanding of the principles and significance of energy conversion processes, including indirect and direct energy conversion, and the application of nanoscale catalysts to improve energy efficiency and industrial productivity	U	PO1, PO2, PO3	
2	Analyze the photovoltaic principles underlying solar energy generation and evaluate the role of nanomaterials in enhancing the efficiency and performance of solar power systems, including dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and light- emitting diodes	AN	PO1, PO2	
3	Understand the various methods of hydrogen production, including those from fossil fuels, photochemical, thermal decomposition, and electrolysis methods, and evaluate the use of nanomaterials in optimizing hydrogen storage capacity and methods.	U	PO1, PO2, PO3, PO7	

	Number of COs	6		
CO No.	Expected Course Outcome	Learning Domains *	PO No	
4	Explain the principles, construction, and applications of different types of electrochemical energy storage devices, such as primary and secondary batteries, lithium batteries, lead-acid batteries, and nickel-cadmium batteries, with a focus on the integration of nanomaterials to enhance their performance.	E	PO1, PO7, PO10	
5	Evaluate the role and impact of advanced nanomaterials, including nano-electrochemical systems, in the development and enhancement of rechargeable batteries and fuel cells, as well as the use of carbon materials like graphene, graphene oxide, reduced graphene oxide, fullerene, and carbon nanotubes for efficient energy storage.	E	PO1, PO2	
6	Apply the knowledge of nanomaterials and their applications in sustainable energy solutions, emphasizing the improvement of energy storage and conversion efficiency, as well as the reduction of environmental impact through innovative use of advanced nanomaterials in various energy systems.	A	PO1, PO6, PO7	

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	3	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-
CO 3	2	2	2	-	-	-	1	-	-	-
CO 4	2	-	-	-	-	-	1	-	-	1
CO 5	2	2	-	-	-	-	-	-	-	-
CO 6	2	-	-	· ·	-	2	1	-	-	-

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.			
	Nanom	aterials for sustainable energy					
	1.1	Energy conversion process, indirect and direct energy conversion	4	["1"]			
1	1.2	Application of nanoscale catalysts to improve energy efficiency and industrial productivity	4	["1"]			
	1.3	Nanomaterials for energy generation-Photovoltaic principles	4	["2"]			
	1.4	Nanomaterials for solar power- solar energy materials and devices	4	["2"]			
	Nanomaterials for energy storage						
2	2.1	Hydrogen energy, hydrogen energy production by fossil fuels, photochemical, thermal decomposition and electrolysis methods	5	["3"]			
2	2.2	Hydrogen storage- Hydrogen storage capacity and factors affecting hydrogen storage	4	["3"]			
	2.3	Storage Methods and Materials- metal hydrides, metallic alloy hydrides and carbon nanotubes, capacitors, fuel cells	5	["3"]			

Module	Units	Course Description	Hrs	CO No.		
	Electro	chemical energy storage devices				
3	3.1	Batteries - Primary and secondary, lithium batteries, lead acid batteries, nickel cadmium batteries				
	3.2	Nano-electrochemical systems, integration of Nanotechnology in Electrochemical Devices	5	["4"]		
	3.3	Nanomaterials for rechargeable batteries and fuel cells	3	["4"]		
	Advanced Carbon Nanomaterials for Energy Storage					
	4.1	Structural, electrical, and electrochemical properties of graphene, graphene oxide (GO) and reduced graphene oxide (rGO)	6	["5"]		
4	4.2	Fullerene, Carbon Nanotubes- single walled and multi- walled, and other carbon Allotropes for Advanced Energy Storage Applications	6	["5"]		
	4.3	Fabrication of a Low-Cost Supercapacitor Using Activated carbon Electrodes	5	["6"]		

Assessment Types	MODE OF ASSESSMENT Mode of Assessment: Theory
	A. Continuous Comprehensive Assessment (CCA) • Theory - 30 Marks Assignments, MCQ, Viva, Involvement in classroom activities, Experiential learning
	B. End Semester Evaluation (ESE) • Theory - 70 Marks Assessment Methods - Written examinations Duration of Examination - 2.00 Hrs Pattern of examination for Theory - Non-MCQ Different parts of written examination - Part - A , B , C Answer Type: • PART - A • MCQ - (10 out of 10) - 10 × 1 = 10 • PART - B • Short answer - (6 out of 9) - 6 × 5 = 30 • PART - C • Short Essays - (2 out of 4) - 2 × 15 = 30

References

 1.Mahmoud, Sawsan A., and Basma S. Mohamed. "Solar Energy Conversion and Storage: Rose Bengal-Triton X-100 by Photogalvanic Cell." Journal of Energy Technologies and Policy, vol. 5, no. 12, 2015 2.Kadambi, V., and Manohar Prasad. An Introduction to Energy Conversion. Volume 2. New Age International, 2004. 3.Viswanathan, Balasubramanian. Energy Sources: Fundamentals of Chemical Conversion Processes and Applications. Elsevier, 2016. 4.Capareda, Sergio. Introduction to Biomass Energy Conversions. CRC Press, 2023. 5.Gould, I. "Energy and the Environment." Electron Transfer in Chemistry, vol. 5, Wiley-VCH, 2001, pp. 589–644. 6.Jain, Abhilasha, and Dipti Vaya. "Photocatalytic Activity of TiO₂ Nanomaterial." Journal of the Chilean Chemical Society, vol. 62, no. 4.. 2017.

- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, retain the copyright of this syllabus and expressly prohibit its distribution in complete form to any institution outside our own.
- We, B.C.M. College, Kottayam, agree to appoint a new course coordinator for the proposed Principles and Applications of Nanoscience in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, B.C.M. College, Kottayam and Dr. Mamatha Susan Punnoose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.