

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

			SYLLABUS			
		SIGN	ATURE COURSE			
Name of the College	Marthoma College	homa College, Kuttapuzha P.O, Tiruvalla				
Faculty/ Discipline	Mathematics	nematics				
Programme	BSc (Hons) Mather	Sc (Hons) Mathematics				
Course Coordinator	Dr. Roshan Sara P	hilipose				
Contributors	Dr Roshan Sara Ph	ilipose, Mrs An	u Ann James			
Course Name	Numerical Method	Numerical Methods for Scientific Computing				
Type of Course	DSE	DSE				
Specialization title	Computational Mathematics					
Course Code	MG3DSEMATA02					
Course Level	200					
Course Summary	occur in scientific	applications. The second se	he course present on and serves as	d algorithmic solut ts the fundamental the foundation for	concepts requir	ed to perform
Semester	3	TRATT T	Credits		4	- Total Hours
Course Details	Learning	Lecture	Tutorial	Practical	Others	
Course Details	Approach	4	0	0	0	60
Pre-requisites, if any	Calculus, Program	ming Fundame	ntals, Introductor	y Linear Algebra		

Course Outcomes (CO)

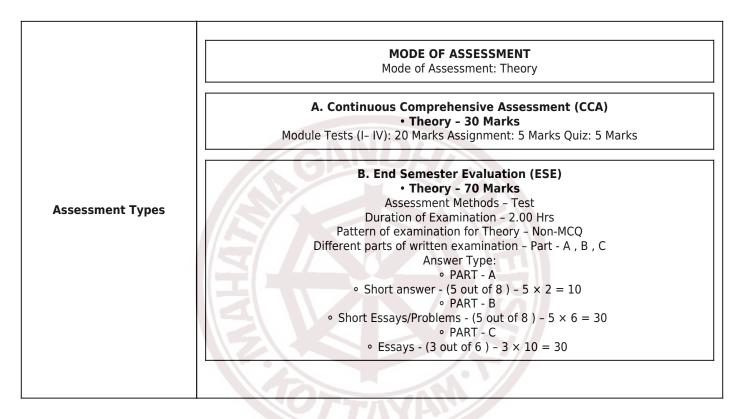
	Number of COs	5			
CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Understand sources and behavior of error in computation	U Z U	PO1, PO2, PO10		
2	Solve equations and systems numerically	А	PO1, PO2, PO3, PO10		
3	Construct interpolating and approximating functions	А	PO1, PO2, PO3, PO10		
4	Apply integration and differentiation techniques numerically	А	PO1, PO2, PO3, PO10		
5	Apply numerical methods to differential equations	AN	PO1, PO2, PO3, PO10		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	-	-	-	-	-	-	-	1
CO 2	3	3	1	-	-	-	-	-	-	2
CO 3	2	2	1	-	-	-	-	-	-	1
CO 4	2	2	1	-	-	-	-	-	-	1
CO 5	2	3	1	-	-	-	-	-	-	2

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).


Course Content

	Classroom	transaction (Units)		
Module	Units	Course Description	Hrs	CO No.
	Foundatio	ns of Scientific Computing		
1	1.1	Introduction, Computer Arithmetic	3	["1"]
1	1.2	Errors	3	["1"]
	1.3	Machine Computation, Computer Software	4	["1"]
	Numerical	Methods for Equations		
	2.1	Introduction to transcendental and polynomial equations, Bisection method, Iteration method based on first degree equation – Newton Raphson Method	6	["2"]
2	2.2	Introduction to system of Linear Algebraic Equations, Direct Methods: Gaussian elimination, Triangularization Method (LU decomposition)	6	["2"]
	2.3	Iterative methods: Jacobi Iteration method, Gauss-Seidel Iteration method	6	["2"]
	Interpolati	on and Approximation Techniques	· · · ·	
2	3.1	Lagrange and Newton interpolations	4	["3"]
3	3.2	Piecewise and Spline Interpolation	5	["3"]
	3.3	Least squares approximation	5	["3"]
	Numerical	Calculus and Differential Equations		
	4.1	Numerical differentiation -Methods based on interpolation	6	["4", "5"]
4	4.2	Numerical integration, Methods Based on Interpolation: Determination of the Error Term, Newton-Cotes Methods	6	["4", "5"
	4.3	Ordinary Differential Equations: Introduction, Initial Value Problem, Numerical Methods – Euler method, Singlestep Methods - Runge-Kutta methods	6	["4", "5"

Teaching and Learning	
Approach	

Classroom Procedure (Mode of transaction)

Classroom Procedure (Mode of transaction) Lectures, Interactive problem-solving, Assignments, Presentations.

References

• Jain, Mahinder Kumar. Numerical Methods for Scientific and Engineering Computation. 6th ed., New Age International, 2012.

Suggested Readings

- Chapra, Steven C., and Raymond P. Canale. Numerical methods for engineers. Vol. 1221. New York: Mcgraw-hill, 2011.
- Burden, Richard L., Douglas J. Faires, and Anette M. Burden. Numerical Analysis. 10th ed., Cengage Learning, 2014.
- Atkinson, Kendall E. An introduction to numerical analysis. John wiley & sons, 2008.
- Hildebrand, Francis Begnaud. Introduction to numerical analysis. Courier Corporation, 1987.

Affidavit

- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, agree to permit the use of our proposed course syllabus by other faculty members within the same discipline for course delivery at their respective institutions.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla, agree to appoint a new course coordinator for the proposed Computational Mathematics in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

			SYLLABUS				
		SIGN	ATURE COURSE				
Name of the College	Marthoma College,	Kuttapuzha P	.O, Tiruvalla				
Faculty/ Discipline	Mathematics	ematics					
Programme	BSc (Hons) Mather	(Hons) Mathematics					
Course Coordinator	Dr. Roshan Sara Pł	loshan Sara Philipose					
Contributors	Dr Roshan Sara Ph	ilipose, Anu Ar	nn James				
Course Name	Computational Met	hods for Optin	nization				
Type of Course	DSE						
Specialization title	Computational Mat	hematics					
Course Code	MG4DSEMATA02						
Course Level	200						
Course Summary	This course provide and numerical met practical implemen	hods, and line	ar programming.	It emphasizes both	n theoretical und		
Semester	4		Credits		4		
Course Dotaile	Learning	Lecture	Tutorial	Practical	Others	I OTAL HOURS	
Course Details	Approach	4	0	0	0	60	
Pre-requisites, if any	Calculus, Linear Alexperience in MAT		sic Numerical Met	hods, along with ir	troductory prog	ramming	

Course Outcomes (CO)

	Number of COs	4			
CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Understand the fundamental concepts, structure, and classifications of optimization problems.	U	PO1, PO2, PO3, PO10		
2	Apply classical techniques to solve single and multivariable optimization problems with and without constraints using analytical methods	A, AN	PO1, PO2, PO3, PO10		
3	Apply the simplex and dual simplex methods to solve linear programming problems and analyze primal-dual relationships.	A, AN	PO1, PO2, PO3, PO4, PO10		
4	Implement and compare unconstrained numerical optimization methods for one-dimensional and multivariable problems.	A, E	PO1, PO2, PO3, PO4, PO5, PO10		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	2	1	-	-	-	-	-	-	1
CO 2	3	3	1	-	-	-	-	-	-	2
CO 3	3	3	2	1	-	-	-	-	-	2
CO 4	2	3	2	1	1	-	-	-	-	3

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.
	Introductio	on to Optimization		
	1.1	Introduction	3	["1"]
1	1.2	Statement of an Optimization Problem	3	["1"]
Ţ	1.3	Classification of Optimization Problems - Classification Based on the Existence of Constraints, Classification Based on the Nature of the Design Variables, Classification Based on the Physical Structure of the Problem	4	["1"]
	Classical C	Optimization Techniques		
	2.1	Single-Variable Optimization	5	["2"]
2	2.2	Multivariable Optimization with No Constraints, Multivariable Optimization with Equality Constraints - Solution by the Method of Lagrange Multipliers	5	["2"]
	2.3	Multivariable Optimization with Inequality Constraints - Kuhn-Tucker Conditions	6	["2"]
	Linear Pro	gramming and the Simplex Method		
	3.1	Introduction, Applications of Linear Programming, Standard Form of a Linear Programming Problem, Geometry of Linear Programming Problems	6	["3"]
3	3.2	Definitions and Theorems, Solution of a System of Linear Simultaneous Equations, Pivotal Reduction of a General System of Equations Simplex Algorithm, Identifying an Optimal Point, Improving a Nonoptimal Basic Feasible Solution, Two Phases of the Simplex Method	6	["3"]
	3.3	Revised Simplex Method, Duality in Linear Programming, Symmetric Primal-Dual Relations, General Primal-Dual Relations, Primal-Dual Relations, Duality Theorems, Dual Simplex Method	6	["3"]

Module	Units	Course Description	Hrs	CO No.
	Unconstrair	ned Numerical Optimization		
	4.1	Introduction, unimodal functions	4	["4"]
4	4.2	Univariate Search Methods - Exhaustive Search, Dichotomous Search, Interval Halving, Fibonacci and Golden Section Methods	6	["4"]
	4.3	Gradient-Based Methods for Multivariable Problems: Steepest Descent Method, Newton's Method	6	["4"]

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Classroom Procedure (Mode of transaction) Lectures, derivation and analysis of methods, lab sessions using MATLAB
-----------------------------------	---

1	MODE OF ASSESSMENT Mode of Assessment: Theory
	A. Continuous Comprehensive Assessment (CCA) • Theory - 30 Marks Module Tests (I– IV): 20 Marks Assignment: 5 Marks Quiz: 5 Marks
Assessment Types	B. End Semester Evaluation (ESE) • Theory - 70 Marks Assessment Methods - Test Duration of Examination - 2.00 Hrs Pattern of examination for Theory - Non-MCQ Different parts of written examination - Part - A , B , C Answer Type: • PART - A • Short answer - (5 out of 8) - 5 × 2 = 10 • PART - B • Short Essays/Problems - (5 out of 8) - 5 × 6 = 30 • PART - C • Essays - (3 out of 6) - 3 × 10 = 30

References

• Rao, Singiresu S. Engineering Optimization: Theory and Practice. 4th ed., Wiley, 2009.

Suggested Readings

- Himmelblau, David M. Applied nonlinear programming. McGraw-Hill, 2018.
- Nocedal, Jorge, and Stephen J. Wright, eds. Numerical optimization. New York, NY: Springer New York, 1999.
- Chapra, Steven C. Applied numerical methods with MATLAB for engineers and scientists. McGraw-Hill, 2018.
- Kiusalaas, Jaan. Numerical Methods in Engineering with MATLAB. Cambridge University Press, 2010.

Affidavit

- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, agree to permit the use of our proposed course syllabus by other faculty members within the same discipline for course delivery at their respective institutions.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla, agree to appoint a new course coordinator for the proposed

Computational Mathematics in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.

• We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

MGU-UGP (HONOURS)

Syllabus

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

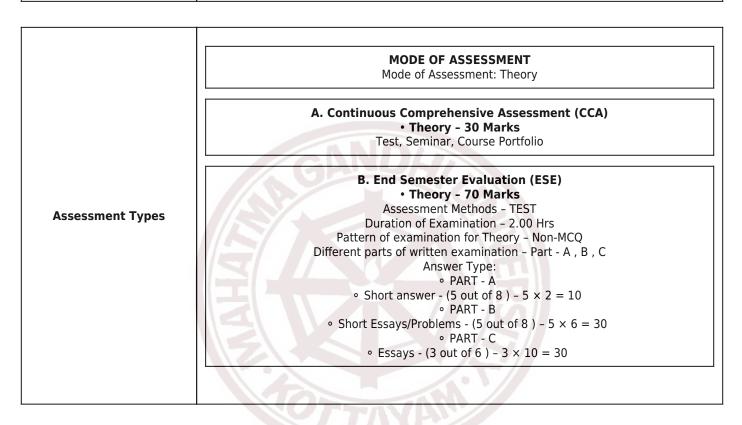
			SYLLABUS					
		SIGN	ATURE COURSE					
Name of the College	Marthoma College	thoma College, Kuttapuzha P.O, Tiruvalla						
Faculty/ Discipline	Mathematics	chematics						
Programme	BSc (Hons) Mather	c (Hons) Mathematics						
Course Coordinator	Dr. Roshan Sara Pl	. Roshan Sara Philipose						
Contributors	MR MANESH JACO	R MANESH JACOB						
Course Name	Design and Analys	is of Algorithm	s					
Type of Course	DSE							
Specialization title	Computational Ma	Computational Mathematics						
Course Code	MG5DSEMATA02							
Course Level	300							
Course Summary	students to analyz formal techniques, emphasizes algori	e algorithm eff and design alg hmic paradign graph algorith	iciency using tim gorithms for a wi ns such as divide ims. Students wil	ne design and analy le and space compl de range of compu -and-conquer, gree I explore computat fficiency.	exity, prove corr tational problem dy methods, dyr	ectness using s. The course namic		
Semester	5	C IIPI	Credits	विकृत	4	Tabal Haura		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours		
Course Details	Approach	4	0	0	0	60		
Pre-requisites, if any	MGL	J-UG	P (HO	NOURS	S			

Course Outcomes (CO)

	Number of COs	6			
CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Analyze the efficiency of algorithms using time and space complexity	AN	PO1, PO2, PO3		
2	Design algorithms for a variety of computational problems	С	PO1, PO2, PO3, PO4		
3	Prove correctness of algorithms using inductive proofs and invariants	U	PO1, PO2, PO3, PO9		
4	Identify and apply suitable algorithmic design techniques for specific problems	AN	PO1, PO2, PO4, PO10		
5	Investigate computational complexity and classify problems based on their computational difficulty	E	PO1, PO2, PO10		
6	Analyze and explain major algorithm paradigms.	А	PO1, PO2		

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

CO-PO Articulation Matrix


CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	1	-	-	-	-	-	-	-
CO 2	3	3	2	1	-	-	-	-	-	-
CO 3	3	2	1	-	-	-	-	-	1	-
CO 4	3	3	-	1	-	-	-	-	-	2
CO 5	3	3	-	-	-	-	-	-	-	2
CO 6	3	3	-	-			-	-	-	-

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.
	Basics	of Algorithm Analysis	·	-
1	1.1	Big O notation — sorting and searching — algorithm analysis techniques	5	["1"]
T	1.2	Graph Algorithms 5	5	["1", "2"]
	1.3	Network Flow	5	["1", "2"]
	Greedy	/ Algorithms	·	
2	2.1	Scheduling	8	["3"]
	2.2	Divide and conquer	7	["3"]
	Dynam	ic Programming	·	
2	3.1	Weighted interval Scheduling, Principles of dynamic programming	5	["4"]
3	3.2	Segmented Least Squares, Subset Sums and Knapsacks	5	["4"]
	3.3	Linear programming algorithms and applications	5	["4"]
	NP and	l Computational Intractability	·	
4	4.1	Polynomial Time Reductions	7	["5", "6"]
	4.2	NP- Complete Problems	8	["5", "6"]

Teaching and Learning Approach Classroom Procedure (Mode of transaction) Conceptual Lectures, Worked Examples & Problem Solving, Interactive Discussions, Tutor and Assignments

References

- J. Kleinberg and E. Tardos: Algorithm design, Pearson/Addison-Welsey (2006).
- T.H. Cormen, C.E. Leiserson, R.L. Rivest and Clifford Stein: Introduction to algorithms, 3rd Edition MIT Press 2009

- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, agree to permit the use of our proposed course syllabus by other faculty members within the same discipline for course delivery at their respective institutions.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla, agree to appoint a new course coordinator for the proposed Computational Mathematics in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.

Kottayam, Kerala

Undergraduate Programmes (HONOURS) 2024 Admission Onwards

			SYLLABUS					
		SIGN	ATURE COURSE	1				
Name of the College	Marthoma College,	Kuttapuzha P	.O, Tiruvalla					
Faculty/ Discipline	Mathematics	thematics						
Programme	BSc (Hons) Mather	c (Hons) Mathematics						
Course Coordinator	Dr. Roshan Sara Pł	r. Roshan Sara Philipose						
Contributors	MANESH JACOB	ANESH JACOB						
Course Name	Computational Line	Computational Linear Algebra						
Type of Course	DSE							
Specialization title	Computational Mat	Computational Mathematics						
Course Code	MG6DSEMATA02			951				
Course Level	300							
Course Summary	in scientific and en numerical accuracy implement algorith	gineering cont y and stability, ims using scier ensional data.	exts. It covers te and applying ma ntific programmir Emphasis is place	approaches to solv echniques for solvin atrix factorization n ng languages and d ed on practical app	g linear systems nethods. Student lesign computati	s, evaluating ts will develop and onal strategies for		
Semester	6		Credits	4	Total Hours			
Course Details	Learning	Lecture	Tutorial	Practical	Others			
	Approach	4	0	0	0	60		
Pre-requisites, if any	MGU	J-UG	P (HO	NOURS	S			

Course Outcomes (CO)

	Number of COs	6			
CO No.	Expected Course Outcome	Expected Course Outcome Learning Domains *			
1	Analyze and apply numerical methods for solving linear systems	AN	PO1, PO2, PO3		
2	Evaluate accuracy, Conditioning and numerical stability in computational problems	E	PO1, PO2, PO3, PO4		
3	Use matrix factorization techniques in various situations	А	PO1, PO2, PO3, PO9		
4	Prepare suitable linear algebra algorithms for specific problems using scientific programming languages.	AN	PO1, PO2, PO4, PO10		
5	Design computational strategies for problems involving high dimensional matrices	E	PO1, PO2, PO10		

	Number of COs		6
CO No.	Expected Course Outcome	Learning Domains *	PO No
6	Apply computational Linear Algebra tools to solve problems in science and engineering	А	PO1, PO2

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)


CO-PO Articulation Matrix

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	2				-	-	-	-
CO 2	3	3	1	1			-	-	-	-
CO 3	3	2	2					-	1	-
CO 4	2	3		2				-	-	3
CO 5	3	3				· · ·		-	-	1
CO 6	3	3		···		•	D	-	-	-

'0' is No Correlation, '1' is Slight Correlation (Low level), '2' is Moderate Correlation (Medium level) and '3' is Substantial Correlation (High level).

Course Content

Module	Units	Course Description	Hrs	CO No.
	Matrix	Operations		
-	1.1	Matrix Multiplication	4	["1"]
1	1.2	Norm of vectors	4	["1"]
	1.3	Basic problems in Machine Learning and Neural Networks	7	["1"]
	Factori	zation of Matrices and Applications	I	
2	2.1	LU Decomposition and Applications	5	["2", "3"]
2	2.2	QR Decomposition	5	["2", "3"]
	2.3	Gram-Schmidt Orthogonalization	5	["2", "3"]
	Eigen \	/alues and Factorizations	•	•
2	3.1	Diagonalization of matrices	5	["3"]
3	3.2	Eigen value Algorithms	5	["4"]
	3.3	Machine Learning and Optimization Applications of eigen values and eigen vectors	5	["4"]
	Singula	ar Value Decomposition	•	•
4	4.1	Singular Value Decomposition of Square and Rectangular Matrices	5	["1", "5", "6"]
4	4.2	Truncated Singular Value Decomposition	5	["6"]
	4.3	Basic problems in Machine Learning and Neural Networks	5	["5", "6"]

References

- Charu C. Aggarval : Linear Algebra and Optimization for Machine Learning, Springer 2020.
- Lloyed N. Trefethen and David Bau : Numerical Linear Algebra (III)
- Gilbert Strang: Linear Algebra and Learning from Data, Wellesley-Cambridge Press

- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, retain the copyright of this syllabus and expressly prohibit its distribution in complete form to any institution outside our own.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla, agree to appoint a new course coordinator for the proposed Computational Mathematics in the event of the unavailability of the currently nominated coordinator. This appointment will ensure the continued coordination of course delivery, assessments, and all related academic responsibilities necessary for the successful implementation of the specialization, for as long as the college offers this programme.
- We, Marthoma College, Kuttapuzha P.O, Tiruvalla and Dr. Roshan Sara Philipose, declare that no part of this signature course submitted here for approval has been taken from the course content developed by, or from any of the course titles prepared by, the BoS/expert committee in the same discipline under our University.