THE MAHATMA GANDHI UNIVERSITY UNDER GRADUATE PROGRAMMES (HONOURS) SYLLABUS

MGU-UGP (Honours)

(2024 Admission Onwards)

Faculty: Science

BoS: Zoology

Bachelor of Science (Honours) Biological Techniques and Specimen Preparation

Mahatma Gandhi University Priyadarshini Hills Kottayam – 686560, Kerala, India

Syllabus Index

Name of the Major: Biological Techniques and Specimen Preparation

Semester: 1

Course Code	Title of the Course	Type of the Course DSC,	Cred it	Hours/ week	Но) istrib n/ we	
		MDC, SEC etc.			L	T	P	О
MG1DSCBTS100	New biology for the new century	DSC A	4	5	3	0	2	
MG1MDCBTS100	Food, Nutrition and Medicine	MDC	3	4	2	0	2	

L — Lecture, T — Tutorial, P — Practical/Practicum, O — Others

Semester: 2

		Semester . 2						
	1/2	Type of the		Hour		Но	ur	
Course	Title of the Course	Course DSC,	Credit	s/	I	Distrib	outio	n
Code		MDC,SEC etc.	.//			/we	ek	
		Y TAYB		wee	L	T	P	О
				k				
MG2DSCBTS100	Preparation of Biological Specimens	DSC A	4	5	3	0	2	
	Biological Foundations for	MDC	3	4	2	0	2	
	Health							
MG2MDCBTS100	and Wellness	MGU - UGF						

Syllabus Index

Course Code	Title of the Course	Type of the Course DSC,	Cred it	Hou rs/	Hour Distribution /week		ı	
		MDC, SEC etc.		wee	L	T	P	О
				k				
MG3DSCBTS200	Essentials of Biological Techniques	DSC A	4	5	3	0	2	
MG3DSCBTS201	General Microbiology	DSC A	4	5	3	0	2	
	Clinical Biochemistry and Clinical	DSE (Any 1)	4	4	4	0	0	
MG3DSEBTS200	Microbiology		1					
MG3DSEBTS201	Aquarium Management		4	4	4	0	0	
MG3DSCBTS202	Diverse Animal Life	DSC B	4	5	3	0	2	
MG3MDCBTS200	Science of Organic Farming	MDC	3	3	3	0	0	
	Public Health, Hygiene and Sanitation: An	VAC	3	3	3	0	0	
MG3VACBTS200	awareness	ar Suffered	P					

Semester: 4

Course Code	Title of the Course	Type of the Course DSC, MDC,SEC	Cred	Hou rs/	Γ		our bution	l
		etc.		wee	L	T	P	C
				k				
MG4DSCBTS200	Genetic Engineering and Plant Tissue Culture	DSC A	4	5	3	0	2	
MG4DSCBTS201	Cell Biology	DSC A	4	5	3	0	2	

MG4DSEBTS200	Enzymology	DGE (A. 4)	4	4	4	0	0	
MG4DSEBTS201	Research Methodology and Biostatistics	DSE (Any 1)	4	4	4	0	0	
MG4DSCBTS202	The Molecules of Life	DSC B	4	5	3	0	2	
MG4VACBTS200	Human rights and Gender Equality	VAC	3	3	3	0	0	
MG4SECBTS200	Basic Molecular Techniques	SEC	3	3	3	0	0	
MG4INTBTS200	Internship	INT	2					

MGU-UGP Syllabus Index

Semester: 5

Course	Title of the Course	Type ofthe	Cred it	Hou	I	Hoı Distrib		
Code		Course DSC,		rs/		/wee		
		MDC,SEC etc.		wee	L	T	P	О
				k				
MG5DSCBTS300	Developmental Biology	DSC A	4	5	3	0	2	
MG5DSCBTS301	Molecular Biology	DSC A	4	5	3	0	2	
MG5DSCBTS302	Genetics	DSC A	4	4	4	0	0	
MG5DSEBTS300	Immunology	DSE	4	4	4	0	0	
MG5DSEBTS301	Introduction to Forensic Biology	DSE (Any 1)	4	4	4	0	0	
MG5DSEBTS302	Evolution and Ethology		4	4	4	0	0	
MG5DSEBTS303	Neurobiochemistry		4	4	4	0	0	
MG5SECBTS300	Entrepreneurship in Biochemistry	SEC	3	3	3	0	0	

MGU - UGP Syllabus Index

Course Code	Title of the Course	Type of the Course DSC,	Cred it	Hou rs/		Hour Distribution /week		
		MDC,SEC etc.		wee	L	T	P	О
				k				
MG6DSCBTS300	Food and Industrial Microbiology	DSC A	4	5	3	0	2	
MG6DSCBTS301	Human Physiology	DSC A	4	5	3	0	2	
MG6DSEBTS300	Biotechnology for Human Welfare	DSE	4	5	3	0	2	
MG6DSEBTS301	Introduction to Bioinformatics	DSE (Any 1)	4	4	4	0	0	
MG6DSEBTS302	Animal Cell Culture and Stem Cell Biology		4	4	4	0	0	
MG6VACBTS300	From Lab to Life	VAC	3	3	3	0	0	
MG6SECBTS300	Practical Bioinformatics	SEC	3	3	3	0	0	

MGU-UGP Syllabus Index

Course Code	Title of the Course	Type of the Course DSC, MDC,SEC	Cred it	Hou rs/	D	Hou pistribo /wee	ution	
		etc.		wee	L	T	P	C
				k				
MG7DCCBTS400	Microbial Food Safety	DCC	4	5	3	0	2	
MG7DCCBTS401	Biotechnology in Clinical Diagnosis	DCC	4	4	4	0	0	
MG7DCCBTS402	Biosafety, Bioethics and IPR	DCC	4	4	4	0	0	
MG7DCEBTS400	Plant Physiology and Phytochemical Techniques		4	4	4	0	0	
MG7DCEBTS401	Cancer Biology	DCE (Any 3)	4	4	4	0	0	
MG7DCEBTS402	Clinical Research and Pharmacovigilance	OTTOVAN	4	4	4	0	0	
MG7DCEBTS403	Stress Physiology	TAIR	4	4	4	0	0	
MG7DCEBTS404	Toxicology Studies and Techniques	था असूतसङ्	4	4	4	0	0	

MGU-UGP (HONOURS)

Syllabus

		Type of the Course	Cred	Hou		Ног		
Course Code	Title of the Course	DSC, MDC,SEC	it	rs/	D	istrib wee/		
Code		etc.		wee	L	T	Р	O
				k				
MG8DCCBTS400	Omics approaches in Biotechnology	DCC	4	5	3	0	2	
MG8DSCBTS401	Microbial Biotechnology	DCC	4	5	3	0	2	
MG8DSEBTS400	Plant Biotechnology	GANDA	4	5	3	0	2	
MG8DCEBTS401	Biotechnology and Forensic Science	XX	4	5	3	0	2	
MG8DCEBTS402	Plant Microbe Interaction	DCE (Any 3)	4	5	3	0	2	
MG8DCEBTS403	Molecular Phylogeny		4	5	3	0	2	
MG8DCEBTS404	Genomics, Proteomics and Nanotechnology	OFFICE	4	5	3	0	2	
MG8PRJBTS400	Project	PRJ	1 2					

MGU-UGP (HONOURS)

Syllabus

MGU-UGP (HONOURS)
Syllabus

MahatmaGandhiUniversity Kottayam

Programme	BSc(Honours)Biological	Techniqu	es and Spe	cimen Prep	paration	
Course Name	NEW BIOLOGY FOR T	HE NEW C	CENTURY			
Type of Course	DSC A					
Course Code	MG1DSCBTS100	ANI				
Course Level	100					
Course Summary	Introductory level course to life forms, their emergence organisms, selected technicand research are studied k	e, organiza ques used	tion and div	versity. The m and their	molecular mach	inery of
Semester	I	Cre	dits	 	4	
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical 1	Others Case Studies Group work Seminars Presentations	Total Hours
Pre- requisites, if any	None	CD (III			r resentations	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domain*	PO No
1	Understand the fundamental principles and concepts that govern the living world enabling the organisms to exist through various levels of biological organization.	U	2,3,10
2	Categorize and identify group organisms based on their cellular structures and biological classification	K	2,3,10
3	Identify and classify different types of biomolecules based on their function	K	2,3,10
4	Understand the basic principles of molecular genetics and gene expression	U	2,3,10
5	Analyze the relationships of biomolecules and how it contributes to the overall function of cell and organism	An	2,3,10

6	Understand the basic principles behind evolution of life forms and environmental biology	U	2,3,10
7	Explore the milestones and techniques used for the advancements and emerging trends in the field of modern day applied biology	E	2,3,10
8	Develop thinking abilities through the analysis of case studies and articles related to biological studies	An	2,3,10
9	Understand the evolving global challenges and its impact on the various aspects of the world	U	2,3,10
10	Understand some of the modern day concerns of the world and think how they can be addressed using the technologies in Biology	U, An	2,3,7,10
**	Remember(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),C	Create(C),Skill	!(S),

Interest(I) and Appreciation(Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO		
			45	No.		
	1.1	The living world , the five kingdom classification by Whittaker	5	1,2		
1	1.2	Prokaryotic and eukaryotic cell structures; The structural composition and the biomolecular dissection of the cell.	5	1,2,3		
	1.3	Organisms as molecular machines driving the genetic flow of information. The era of the genetic code	5	1,3,4,5		
	2.1	Cell cycle and cell division. Genes defining the organizational fabric of life. The principles of inheritance and variation.	5	1,4,5		
2	2.2	Emergence; Key aspects of evolution, misconceptions and evidences. Origins of life (Darwin), Mechanism and concept of Mutation	5	1,6		
	Organism and its environment. Concepts of population and ecosystem. Biodiversity					
	3.1	Introduction to emerging branches which are poised to accelerate discovery and predictability in design and support of research, medicine, agriculture and manufacturing. Biotechnology Bioinformatics The 'Omics' approaches Nanotechnology	5	7		
3	3.2	Important biological techniques for visualization and understanding chemistry of cells Microscopy, histochemical and biochemical techniques.	4	7		

Important biological techniques for structural, cellular and molecular studies; NMR ,X-ray crystallography, Flow cytometry and radioisotope techniques 3.4					
Monoclonal Antibody technology, Sequencing technology. Bioinformatics PRACTICAL 4.1 Case studies and identification of the important milestones which have improved human welfare and the role played by biological techniques in • prevention and treatment of infectious diseases • cnhanced agricultural productivity and food security • health care diagnosis • drug development and therapy • research (Group work.) 4.2 Case studies on global issues which can be addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (e) Aging population (Group work) 4.3 Scientific breakthroughs in Biology Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)		3.3	crystallography, Flow cytometry and	4	7
4.1 Case studies and identification of the important milestones which have improved human welfare and the role played by biological techniques in • prevention and treatment of infectious diseases • enhanced agricultural productivity and food security • health care diagnosis • drug development and therapy • research (Group work.) 4.2 Case studies on global issues which can be addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (e) Aging population (Group work) 4.3 Scientific breakthroughs in Biology Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)		3.4	Monoclonal Antibody technology, Sequencing technology.	4	7
milestones which have improved human welfare and the role played by biological techniques in prevention and treatment of infectious diseases chanced agricultural productivity and food security health care diagnosis drug development and therapy research (Group work,) 4.2 Case studies on global issues which can be addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (c) Aging population (Group work) 4.3 Scientific breakthroughs in Biology Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)			PRACTICAL	30	
4.2 addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (e) Aging population (Group work) 4.3 Scientific breakthroughs in Biology Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)		4.1	milestones which have improved human welfare and the role played by biological techniques in • prevention and treatment of infectious diseases • enhanced agricultural productivity and food security • health care diagnosis • drug development and therapy • research (Group work,)	10	8,9,10
Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge of the technologies listed above)	4	4.2	addressed using technologies in life sciences (a) Climate Change (b) Food Security (c) Disease prevention and management (d) Environmental conservation & water management (e) Aging population (Group work)	10	8,9,10
5 Teacher Specific Module		4.3	Antibiotics Hela Cell line Double Stranded structure of DNA PCR Gene Therapy Fluoroscent Protein HGP RNAi Crispr-Cas9 (Student Presentations on working knowledge	10	7, 8,9,10
		5	Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning Approach	Lectures, group interactions, group seminar, power point presentations, case studies
	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources
	MODE OF ASSESSMENT
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 25 marks Test Papers/Assignments/Seminars Practical Total= 15 marks Case Study presentations Chart/Visual presentations Case Study Reports
	B. End Semester Examination Theory Total = 50 marks (Duration 1.5 hrs) Short essays (5 out of 7) X 4= 20 marks Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks Practical Total =35 marks (Duration 2hrs) Record= 10 marks Viva= 5 marks Case Study Report=5 marks Examination=15 marks

References

MGU-UGP (HONOURS)

- 1. Agarwal, S. R., & Agarwal, S. K. (2019). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. New Delhi, India: S. Chand Publishing.
- 2. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell. Garland Science.
- 3. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. Cold Spring, Harbour Laboratory Press.
- 4. Brooker, R. J. (2017). Genetics: Analysis and principles. McGraw-Hill Education.
- 5. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 6. Gupta, P. K. (2018). A Textbook of Plant Physiology, Biochemistry, and Biotechnology. New Delhi, India: Rastogi Publications.
- 7. Hall, B. K., & Hallgrimsson, B. (2008). Evolution. IV Edition. Jones and Bartlett Publishers.

- 8. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 9. Kormondy, E. J. (1996). Concepts of Ecology. Prentice Hall, U.S.A. 4th edition.
- 10. Kumar, H., &Tyagi, R. (2015). A Comprehensive Textbook of Applied Biology. New Delhi, India: S. Chand Publishing.
- 11. Mader, S. S., & Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 12. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry. W.H. Freeman.
- 13. Ridley, M. (2004). Evolution. III Edition. Blackwell Publishing.
- 14. Sharma, P. D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.

SUGGESTEDREADINGS

- 1. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. (2009). The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.
- 2. Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 3. De Robertis, E.D.P. and De Robertis, E.M.F. (2006). Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.
- 4. Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India.
- 5. Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc.
- 6. Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc.

Mahatma Gandhi University Kottayam

Programme								
Course Name	FOOD, NUTRITION A	FOOD, NUTRITION AND MEDICINE						
Type of Course	MDC							
Course Code	MG1MDCBTS100							
Course Level	100	100						
Course Summary	Foundations of Nutriti food for health	onal Bioch	nemistry- B	asics of imp	oortance and	the role of		
Semester	1/5//		Credits		3	Total		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours		
		2	0	1	0	60		
Pre-requisites, if any	Nil							

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To understand the importance of health for quality living and health hazards	U	2,3,10
2	To acquire knowledge about the role of food for sound health.	A	2,3,10
3	To learn the impact of different nutraceuticals and functional foods on health	An	2,3,10
4	To understand phytochemical components and its management on health and diseases	U	2,3,10
5	To apply basic nutrition knowledge in making foods choices and obtaining an adequate diet.	A,K	2,3,10
6	To gain competence in connecting the role of various nutrients in maintaining health and learn to enhance traditional recipes	A,An,C,I	2,3,9,10
7	To gain knowledge about principles of diet therapy and different therapeutic diets.	E,S	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

M 11	TT *4	Course description		CO
Module	Units	Course description	30	No.
		Food and health		
	1.1	Health – Definition, meaning of health and factors affecting health. Health hazards – environment, population explosion,	2	1
1		explosives, adulteration, dampness and measures to prevent health hazard.		
		Food for health promotion-Definition of food, Nutrition, Nutrients and Nutritional status.		
	1.2	Functions of food – Physiological, psychological and socio - cultural functions, constituents of food and their functions	3	1,2
	1.0	Principles of nutrition Introduction to Nutrition - General introduction, history of Nutrition. Energy - Definition of Kilocalories, Joule, energy value of foods.		
	1.3	Basal metabolic rate definition, Factors affecting BMR. Energy requirements and recommended dietary allowance (RDA) for infants, children and pregnant women. Carbohydrates, Proteins, Fats and Lipids-Functions, sources, utilization, requirement and important functions	8	1,2
	1.4	Vitamins – Fat soluble vitamins –A, D, E and K-functions, source, requirements, deficiency disorders. Water soluble vitamins –The B-complex vitamins –	8	2,3
		Thiamine, Riboflavin, Niacin, Folic acid, Biotin, Pantothenic acid, B12 and Vitamin C - functions, source, requirements and deficiency disorders		Í
	1.5	Minerals - General functions in the body, classification-macro and micro minerals. Micro minerals – Iron, Fluorine, Zinc, copper, Iodine -functions, absorption, utilization, requirements, deficiency and toxicity. Macro minerals – Calcium & phosphorus - functions, absorption &utilization of iron, deficiency and toxicity. Water Balance – Functions of water, water distribution, maintenance of water and regulation of acid-base balance in the body.	5	2.3
2	2.1	Functional food and nutraceuticals Definition and source- Functional foods and	2	2.3,4

		Nutraceuticals. Development of functional foods, challenges and safety considerations, Future trends of functional foods. Types of functional foods: whole foods, enriched foods, enhanced foods, fortified foods, modified foods. Dietary supplements and fortified foodsits need, health benefits and adverse effects.		
	2.2	Functional foods of animal origin: Diary products, sea foods, egg. Functional foods of plant origin: fruits, vegetables, nuts, spices, cereals. Probiotics, prebiotics and synbiotics as functional foods, current trend and effects of probiotics on health	1	3,4
2	2.3	Nutraceutical and herbal nutraceuticals. Phytochemicals, phytosterols and other bioactive compounds, peptides and proteins, carbohydrates, lipids, vitamins and minerals- their sources and role in promoting human health. Current and future trends.	1	4
		PRACTICALS	30	
3	3.1	Case Studies on Objectives of diet therapy - Role of a dietitian. Principles of diet preparation and counselling. Normal diet in the hospitals –, liquid, semi liquid, light, soft diet, bland diet and regular diet, Different types of Feeding. Therapeutic diets for the following disorders: a) Obesity - definition, etiology, treatment. b) Diseases of the gastro intestinal tract- ulcer, constipation & diarrhoea c) Diseases of the liver and gall bladder (risk factors and diet therapy) d) Diseases of the cardio vascular system (risk factors and diet therapy) e) Diabetes mellitus – Types, causes, symptoms, bio-chemical changes, insulin, hypo-glycemic drugs, dietary management. f) Diseases of the kidney and urinary tract.	8	5,6,7
	3.2	Case studies on 1. The impact of processed foods on the health of individuals, comparing the nutritional content of processed versus whole foods and analyzing the potential long-term health effects. 2. The prevalence of food allergies in children and	8	5,6,7

		how diet modifications can help prevent allergic reactions and improve overall health.		
	3.3	 3. How access to nutritious foods can improve health outcomes and reduce the risk of malnutrition. 4. Relationship between gut health and mental health, exploring the role of probiotics, prebiotics, and dietary fiber in supporting a healthy microbiome and improving mood and cognitive function. 	8	5,6,7
	3.4	Nutritional status assessment of the critically ill patients, complications, nutritional support systems for the critically ill, commercial feeding formulas and special diets for critically ill.	6	5,6,7
4		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching and Learning	Lectures, group interactions, group seminar, power point presentations, case studies
Approach	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resource
	विद्या अस्तस्र सहस्ते 🗎
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment	Theory Total = 15 marks
Types	Test Papers/Assignments/Seminars
- J P - 2	Practical Total= 15 marks
	Timely submission of Records
	Chart/Visual presentations
	Diet assessment study
	B. End Semester examination
	Theory Total = 35 marks (Duration 1hr)
	Short essays (5 out of 7) X 4= 20 marks
	Short Questions (2 out of 4) X 5= 10 marks
	Multiple Choice Questions $(1X 5) = 5$ marks
	Practical Total =35 marks (Duration 2hrs)
	Record = 10 marks
	Viva= 5 marks
	Case Study Report=5 marks
	Practical case study= 15 marks

References

- 1. Antia, F.P. (1987). Clinical Dietetics and Nutrition. Oxford University Press.
- 2. Bamji, M.S., Krishnaswamy, K., &Brahmam, G.N.V. (2009). Textbook of Human Nutrition (3rd ed.). Oxford and IBH Publishing Co. Pvt. Ltd.
- 3. Dash, B. N. (2003). Health & Physical Education (1st ed.). Neelkamal Publications.
- 4. Essentials of Food & Nutrition Vol. II. (n.d.). Dr. M. Swaminathan. Bappco.
- 5. Ghosh, D., et al. (2012). Innovations in Healthy and Functional Foods. CRC Press.
- 6. Krause, L.K., & Mahan, E. (n.d.). Food, Nutrition and Diet Therapy (6th ed.). W.B. Saunders Company.
- 7. Madhavi, D.L., Deshpande, S.S., &Salunkhe. (1995). Food Antioxidants: Technological, Toxicological and Health Perspective. CRC Press.
- 8. Normal and Therapeutic Nutrition. (n.d.). Robinson, et al. Mac Millan Pub.Co.
- 9. Shakuntalamanay, N., & Shadaksharaswam, M. (2008). Food Facts and Principles (3rd ed.). New Age International.
- 10. Sizer, F., & Whitney, E. (2000). Nutrition Concepts and Controversies (8th ed.).
- 11. Srilakshmi. (2002). Dietetics (4th ed.). New Age International (P) Limited, Publishers.
- 12. Understanding Nutrition. (1996). Whitney, P.N., & Roes, S.R. West Publication Co.
- 13. Wildman, R.E.C. (2001). Handbook of Nutraceutical and Functional Foods. CRC Press.
- 14. Yadav, S. (1997). Basic Principles of Nutrition (1st ed.).

MGU-UGP (HONOURS)

Syllabus

MGU-UGP (HONOURS)
Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biolo	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	PREPARATION OF	BIOLOGIC	CAL SPECI	IMENS			
Type of Course	DSC A						
Course Code	MG2DSCBTS100	AND					
Course Level	100						
Course Summary	The student will acqui plants and animals. The biological specimens.					•	
Semester	п		Credits	3	4	Total	
Course	LearningApproach	Lecture	Tutorial	Practical	Others	Total Hours	
Details		3	0	1	0	75	
Pre-requisites, if any							

PO No
2
2,3
2,3,10
2,3,9,10
2,3,9,10
_

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I)and Appreciation(Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
1,	1.1	General Concepts of specimen preservation, Types, collection techniques-(Baerman funnel, Berlese funnel, Dreger, orange peel bucket, dippers, sampling method, plankton net and night lighting. Transect and Quadrat method.	5	1
1.	1.2	Preservatives and their usage, field note, labeling, and transportation and storage, Precaution measure for preservation.	5	1
	1.3	Rules and laws for collecting specimen.	2	1
2	2.1	Brief classification, Collection and preservation of Invertebrates- (Protista, porifera, coelenterate, ctenophore, Platyhelminthes, Nematoda, Annelida, Arthropoda, Mollusca and Echinodermata). Collection and preservation technique (any two method)	12	1,2
	2.2	Brief classification, Collection and preservation of Vertebrates- (Pisces, aves, amphibians, reptiles and mammals). Collection and preservation technique (any two method)	10	1,2
	3.1	Brief classification of plants, Basics of plant anatomy: simple tissue, complex tissues	8	4
	3.2	Where and how to collect plants? Methods of preparation and storage of herbarium sheets and museum specimens.	3	3
3	3.3	Preparation of life cycles of specimens (any 5), Alizarin staining, Articulated skeleton preparation, Dermastid technique, Resin embedded specimen, preparation of sections involving microtome and cryostat, Taxidermy.	14	3
	3.4	Staining: Simple stains, double stains, special stains, HE staining. Temporary and permanent slide preparation.	8	4
	3.5	Collection of plants, preservation of plants: dry (display box, Ricker box, herbarium and wet preservation (special preservatives) and storage.	8	5
		PRACTICAL	30	
4		 Whole mount preparation of small animals, parts of animals and plants Alizarin preparation of small invertebrates Preparation of articulated skeletons Preparation of resin embedded specimens (plant or animal) Demonstration of Taxidermy Preparation of herbarium sheets Preparation of specimens by each student from a given phylum Preparation of display boxes of dry plant and plant product mounts 		1,2,3,4,5

5	Teacher Specific Module	

Teaching	Classroom Procedure (Mode of transaction)			
and	Lecture, Group activities, group interaction, seminar, presentations, Field studies			
Learning Approach	Note: Only a brief description of the focal topic is required. Teaching aids like photographs, models, videos related to the topic may be used.			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA) Theory			
A aa aa aa aa a	Total=25 marks			
Assessment Types	Quiz/ Test Papers/ seminars			
Types	Practical Total 15 marks			
	Lab performance/ record/ field report, individual specimen preparation,			
	herbarium sheets			
	B. End Semester Examination			
	Theory Total 50 marks, Duration 1.5 hrs			
	Short Essays 5 out of 7x4=20 marks			
	Short questions-10 out of 12x2=20 marks			
	Fill in the blanks -1x10=10 marks			
	Practicals Total 35 marks Duration- 2 hrs Record 10 marks,			
	Examination 25 marks: Preparation of Specimens 15 marks Viva-2 marks,			
	Herbarium sheets- 8 marks			

References

- 1. Bean, A.R., ed. (2006). Collecting and preserving plant specimens: a manual. Queensland Herbarium, Environmental Protection Agency Biodiversity Sciences unit, Brisbane, Australia. [ii], 28 p. Call No.: QK 61. C64 2006
- 2. Bhaskaran, K.K. (1986). Micro technique and Histochemistry. Evershine Press, Vellangalloor.
- 3. Clute, W.N. (1903). The making of an herbarium. Charles D. Pendell, Publisher, Binghamton, NY. 23 p. Call No.: QK 61 .C58 1903
- 4. DeWolf, G.P., Jr. (1968). Notes on making an herbarium. Arnoldia, 28(8/9), 69-111. Call No.: QK 61 .D48 1968
- 5. Junqueira, L.C., & Carneiro, J. (2005). Basic Histology (11th ed.). Mc GrawHill.

Mahatma Gandhi University Kottayam

Programme						
Course Name	BIOLOGICAL FOUNDATIONS FOR HEALTH AND WELLNESS					
Type of Course	MDC					
Course Code	MG2MDCBTS100					
Course Level	100	100 GANDA				
Course Summary	Introductory level course for understanding the basicmulti-faceted concepts in biology and its relevance in promoting human health and the overall wellbeing and quality of life.					
Semester		Cre	dits	5	3	
Course Details	LearningApproach	Lecture 2	Tutorial 0	Practical	Others Case Studies Group work	Total Hours 60
Pre-requisites, if any	None				,	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome (HONOURS)	Learning Domains*	PO No
1	Understand the fundamental principles of biology and how they relate to human health and wellness.	U, K	2,3,10
2	Learning the structure and function of the human body systems and their role in maintaining human health and wellness.	K	2,3,10
3	Explore the role of genetics, molecular expression and advancements in the field of biology in determining individual health outcomes including genetic testing, personalized medicine.	U,E	2,3,10
4	Analyse the molecules of life, nutrition and lifestyle choices and its relation with preventable diseases.	U,An	2,3,10
5	Explore the relationship between biology and mental health, including the role of neurotransmitters and hormones in health and well-being.	U,An	2,3,10

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 30	CO No.
	1.1	Biomolecules in the cell and their functions. Hierarchical organization in living systems.	5	1
1	1.2	Role of Biology in health and wellness. Exploring wellness and its dimensions. Relationship between biology and wellness	3	1
	1.3	Role of nutrition in maintaining wellness. Relationship between diet and chronic diseases	3	1,4
	1.4	Genetics and wellness. Basic concepts of reproduction. Genes as the basis of heredity. Central dogma of molecular biology and genetic code	5	1,3
2	2.1	Understanding the basic level structure and function of major body systems Circulatory system, respiratory system, digestive system	4	2
	2.2	Muscular and skeletal system, excretory system and reproductive system	4	2
	2.3	Nervous system, immune system and endocrine system. Understanding the different regions and structures of the brain as a part of nervous system. Neuro endocrine signaling mechanisms. Biological basis of mental health disorders	6	2,5
		PRACTICALS	30	
3	3.1	 Systematic analysis of biomolecules using qualitative assays. Estimation of protein using Biuret method. Separation of components of a given mixture of amino acids using paper chromatography 	15	1,2
3	3.2	4. Study of different stages of mitosis in onion root tip (temporary preparation)	5	1,3
	3.3	5. Case study on lifestyle disorders; importance of early detection and regular screening of common diseases 6. Analysing popular diet patterns inKerala	5	1, 3,4

3.4	Practical Classes on Relaxation Techniques . Yoga . Cardio training & exercise 3. Meditation 4. Mindfulness (Hands on Training and Teaching Sessions)	5	2,5
4	Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	Lectures, group interactions, group seminar, power point presentations, case studies
	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment	Theory Total = 15 marks
Types	Test Papers/Assignments/Seminars
	Practical Total= 15 marks
	Timely submission of Records
	Chart/Visual presentations Diet assessment study
	B. End Semester examination
	Theory Total = 35 marks (Duration 1hr) Short essays (5 out of 7) X 4= 20 marks Short Questions (2 out of 4) X 5= 10 marks Multiple Choice Questions (1X 5) = 5 marks Practical Total =35 marks (Duration 2hrs) Record = 10 marks Viva= 5 marks
	Case Study Report=5 marks Practical case study= 15 marks

References

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th ed.). Garland Science.
- 2. Berg, J. M., Tymoczko, J. L., &Gatto, G. J. (2018). Biochemistry (9th ed.). W.H. Freeman and Company.

- 3. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 4. Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., Lewontin, R. C., &Gelbart, W. M. (2020). An Introduction to Genetic Analysis (12th ed.). W.H. Freeman and Company.
- 5. Guyton, A. C., & Hall, J. E. (2015). Textbook of Medical Physiology (13th ed.). Philadelphia, PA: Elsevier.
- 6. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 7. Klug, W. S., Cummings, M. R., Spencer, C. A., &Palladino, M. A. (2018). Concepts of Genetics (12th ed.). Pearson.
- 8. Mader, S. S., & Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 9. Mary Larkin (2013) Health and Well-Being Across the Life Course; Sage Publications
- Nelson, D. L., Cox, M. M. (2017). Lehninger Principles of Biochemistry (7th ed.). W. H. Freeman.
- 11. Nestler, E. J., Hyman, S. E., &Malenka, R. C. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). McGraw-Hill Medical.
- 12. Smith, C. M., Marks, D. B., & Lieberman, M. A. (2017). Marks' Basic Medical Biochemistry: A Clinical Approach (5th ed.). Wolters Kluwer.
- 13. Tortora, G. J., &Derrickson, B. H. (2017). Principles of Anatomy and Physiology (15th ed.). Hoboken, NJ: Wiley.
- Nutt, D. J., Malizia, A. L., & Zohar, J. (2008). Current perspectives on the neurobiology of anxiety and its treatment. Human Psychopharmacology: Clinical and Experimental, 23(6), 363-374.

SUGGESTEDREADINGS

- 1. Anderson, C. M., & Miller, E. F. (2019). The microbiome and its implications for human health. Current Biology, 29(16), R719-R722.
- 2. Brown, K. L., & Davis, R. M. (2021). The impact of nutrition on immune function: A comprehensive review. Nutrition Reviews, 79(2), 144-165.
- 3. Clark, A. J., & Patel, N. B. (2019). The influence of genetics on disease susceptibility. Current Opinion in Immunology, 60, 98-102.
- 4. Hall, M. E., &Loprinzi, P. D. (2020). Physical activity and cardiovascular health: An update. American Journal of Lifestyle Medicine, 14(6), 580-586.

- 5. Johnson, L. M., & Thompson, R. W. (2020). The effects of stress on mental health and well-being. Journal of Health Psychology, 25(8), 1052-1065.
- 6. Roberts, S. G., & Williams, M. A. (2019). Understanding the genetics of obesity: From genes to pathways. Clinical Genetics, 95(1), 6-14.
- 7. Smith, J. D., & Johnson, A. B. (2020). The role of exercise in promoting cardiovascular health. Journal of Applied Physiology, 125(3), 456-468.
- 8. Taylor, R. W., & Williams, S. M. (2019). Dietary strategies for weight management. Nature Reviews Endocrinology, 15(5), 273-277.
- 9. Thompson, H. E., & Jones, C. M. (2020). The role of exercise in preventing chronic diseases. Current Opinion in Cardiology, 35(5), 543-549.
- 10. Wilson, A. B., & Davis, M. C. (2021). Sleep and its impact on physical and mental health. Sleep Medicine Reviews, 57, 101435.

MGU-UGP (HONOURS)

Syllabus

MGU-UGP (HONOURS)
Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniqu	ues and Specimen Pre	paration			
Course Name	ESSENTIALS IN BIOLOGICAL TE	ESSENTIALS IN BIOLOGICAL TECHNIQUES				
Type of Course	DSC A					
Course Code	MG3DSCBTS200					
Course Level	200	200				
Course Summary	course that covers a broad range of various scientific disciplines. It begins technique and an introduction to	Essentials in Biological Techniques is a comprehensive and interdisciplinary course that covers a broad range of bioanalytical techniques applicable to various scientific disciplines. It begins with a review of basic bio analytical technique and an introduction to general terminologies. This course contains widely employed techniques along with their theory, working principle, its possible applications				
Semester		edits	4	Total Hours		
Course Details	Learning Approach Lecture	Tutorial Practical 0 1	Others	75		
Pre-requisites, if any	Student with basic knowledge of bio	ology.				

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Students are able to deal with different tools and techniques used in biological research.	K	2,3,9,10
2	Applications of various bioanalytical instruments in biological research	U,A,An	2,3,9,10
3	Helps to understand the principles and working mechanisms of different instruments.	U,A	2,3,9,10
4	Understand the basic concepts of microbiological techniques including staining and sterilization	U, A,An,S	2,3,9,10
5	Learn the working of various instruments used in microbiology.	U,A,S	2,3,9,10
6	Highlighting the diverse roles that radioisotopes play in medical diagnosis and treatment.	U,I	2,3,9,10

^{*}Remember(K), Understand(U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
		Introduction to Basic Bioanalytical Techniques. Analytical techniques: Colorimetry, pH meter, Spectrophotometry	15	
	1.1	Definition and scope of bioanalysis	2	1
	1.2	Importance and applications of bioanalytical techniques in various fields of biological science. (biological research, medical diagnostics, and therapeutic interventions)	3	1
1	1.3	General principles and applications of Colorimeter, Beer- Lamberts Law, Derivation, Parts & working of a Single Cell Colorimeter, & Double Cell Colorimeter.	3	2
	1.4	Principles, working and applications of pH meter Measurement of pH: Indicators, pH meter, Different Types of Electrodes, advantages and disadvantages of different Electrodes, Factors affecting pH determination	4	2
	1.5	Principle involved in Spectrophotometer. Applications of UV-Visible spectroscopy in bioanalysis Merits and Demerits of: Colorimeter and Spectrophotometer	3	2
		Separation techniques: Centrifuge, chromatography, electrophoresis	12	
	2.1	Centrifugation: Principles, types of centrifuges, application	3	2,3
2	2.2	Principle and technique of chromatographic separations, brief over view about the types of chromatographic techniques (Thin layer, Ion-exchange, Size exclusion chromatography)	5	2,3
	2.3	Principles of electrophoresis, Gel electrophoresis (SDS-PAGE, agarose gel electrophoresis).	4	2,3
		Radiolabeling techniques	18	
3	3.1	Methods of detection and measurement of different types of radioisotopes used in biology, incorporation of radioisotopes in biological tissues and cells. Autoradiography, Liquid Scintillation Counting, Geiger-Muller Counting.	8	6
	3.2	Radioisotopes and their biological applications. Medical Imaging: Technetium-99m (Tc-99m): Radiation Therapy: Iodine-131 (I-131). Tracer Studies in Biology: Carbon-14 (C-14): Carbon	10	6

		dating. DNA and Protein Labeling: Phosphorus-32 (P-32) and Sulfur-35 (S-35). Blood Flow Studies: Technetium-99m (Tc-99m). Radioimmunoassays (RIA): Iodine-125 (I-125) and Iodine-131 (I-131). Bone Imaging: Technetium-99m (Tc-99m) and Strontium-85 (Sr-85).		
		Practical	30	CO
	4.1	Perform paper chromatography of amino acids.	4	4
	4.2	Colorimetric estimation of Ascorbic acid	4	4,5
4	4.3	Spectrophotometric Quantification of DNA.	8	5
	4.4	SDS-PAGE, agarose gel electrophoresis.	8	5
	4.5	Problems in radiology [on half cycle, quantity, disposal]	6	8
	5	Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, group interaction, seminar, presentations Note: Only a brief description of the focal topic is required. Teaching aids like photographs, models, videos related to the topic may be used
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars/ Assignments Practical Total 15 marks Lab performance/ record

B. Semester End examination

Theory Total 50 marks, Duration 1.5 hrs

Short Essays 5 out of 7x4=20 marks

Short questions-10 out of 12x2=20 marks

Fill in the blanks -1x10=10 marks

Practicals Total 35 marks Duration- 2 hrs Record 10 marks,

Examination 25 marks: Performance of various experiments 12marks

Problems in radiology- 8 marks, Viva-5 marks

References

- 1. Bajpai, P.K. 2006. Biological Instrumentation and methodology. S. Chand & Co. Ltd.
- 2. Benjamin/Cummings Publishing Co
- 3. Bhaskaran, K.K (1986) Microtechnique and Histochemistry. Evershine Press, Vellangalloor
- 4. Cappuccino, J.G., and Sherman N. Microbiology A Laboratory Manual 3rd Ed. The
- 5. Campbell D., Biological spectroscopy (1984) Benjamin/Cummings Pub. Co, Menlo Park, Calif, Biophysical techniques series.
- 6. Dubey, R.C. and Maheshwari, D.K (2002) Practical Microbiology S.Chand& Company Ltd.
- 7. Junqueira, L.C., and Carneiro, J (2005)Basic Histology11th Ed. Mc GrawHill
- 8. Wilson K., J. M. Walker, Eds., Principles and techniques of biochemistry and molecular biology (Cambridge University Press, Cambridge (2009) UK: New York, 7th ed.,
- 9. Talaro, K.P., and Talaro, A (2002) Foundations in Microbiology 4th Ed. McGraw Hill.

SUGGESTED READINGS

- 1. Boyer, R. F. (2012). Biochemistry laboratory: modern theory and techniques (2nd ed.). Prentice Hall.
- 2. Katoch, R. (2011). Analytical techniques in biochemistry and molecular biology. Springer.
- 3. Spector, D. L., & Goldman, R. D. (Eds.). (2006). Basic methods in microscopy: protocols and concepts from cells: a laboratory manual. Cold Spring Harbor Laboratory Press.
- 4. Switzer, R. L. (1999). Experimental biochemistry (3rd ed.). W. H. Freeman and Co.
- 5. Boyer, R. F. (2000). Modern experimental biochemistry (3rd ed.). Benjamin Cummings.
- 6. Williams, D. B., & Carter, C. B. (2009). Transmission electron microscopy: a textbook for materials science. Springer. http://dx.doi.org/10.1007/978-0-387-76501-3
- 7. Silverstein, R. M. (2005). Spectrometric identification of organic compounds (7th ed.). John Wiley & Sons.
- 8. Harvey, D. (2000). Modern analytical chemistry. McGraw-Hill.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biolog	gical Tech	niques and	Specimen	Preparation	
Course Name	GENERAL MICROBIOLOGY					
Type of Course	DSC A					
Course Code	MG3DSCBTS201					
Course Level	200					
Course Summary	The course provides an overview of the fundamental concepts and principles of Microbiology. It covers various aspects of microorganisms, including their structure, function, genetics, classification, and diversity. The course also delves into the study of microbial growth and metabolism and the ways to control their growth by physical and chemical means. Additionally, it develops a good understanding of the importance and scale of the antimicrobial resistance crisis.					
Semester	ш	Cr	edits		4	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours 75
Details	Idele	भा अव	(०।स्। श्	53.0	U	/3
Pre- requisites, if any	MGU-I	IGP (HONC	OURS)	•	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains*	PO No	
1	Develop a good understanding of the microbial world	U	2,3,10	
2	Exposure in bacterial cultivation and identification	S	2,3,10	
3	Understand the microbial growth and the ways to control their growth	U	2,3,10	
4	Understand the role Antibiotics and Antimicrobial resistance	U,A	2,3,10	
5	Create basic knowledge about microbial metabolism, microbial genetics and gene transfer.	U,A,S	2,3,10	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				

Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Unit s	Course description	Hrs 45	CO No.
		The world of microbes		
	1.1	History and scope of Microbiology		1
1	1.2	Microbial taxonomy & Identification		1,2
1	1.3	Microscopy & staining techniques		1,2
	1.4	Ultrastructure of bacteria	3	1
	1.5	Ultrastructure of yeast and conomic importance of Fungi		1
	1.6	Viruses: General properties, Phages and its significance		1
	2.	Microbial growth and metabolism	12	
	2.1	Bacterial growth curve, continuous culture		2,3
2	2.2	Factors affecting microbial growth-environmental and nutritional factors		3
	2.3	Bacterial nutrition, nutritional types of bacteria		3
	2.4	Culture media and cultivation techniques		2,3
	2.5	Transport and storage of microbes	1	3
	2.6	Microbial metabolism	2	3,5
	3	Antimicrobial agents and Microbial Genetics	18	
3	3.1		2	3,4
3	3.2	Physical agents of sterilization	2	3,4
	3.3	Chemical agents of sterilization	2	3,4
	3.4	Testing of disinfectants	1	3,4
	3.5	Antibiotics –mode of action	2	3,4
	3.6	Drug resistance in bacteria	2	3,4
	3.7	Methods of testing antimicrobial susceptibility	1	3,4
	3.8	Genetic materials in bacteria. Bacterial chromosome. Extrachromosomal genetic elements: Plasmid, Transposons.	4	5

	3.9	Mechanism of gene transfer & transformation, transduction and conjugation.	2	5
		PRACTICALS	30	
4	4.1	Microscopy and Instruments WHO Safety guidelines and laboratory protocols Study of simple and compound light microscopes Instruments – Autoclave, Hot air oven, Bacteriological incubator, Laminar air flow chamber	4	5
	4.2	Preparation of solid and liquid media for microbial cultures Solid media (1) Nutrient agar (2) Mac Conkey's agar Liquid Media (1) Nutrient broth (2) Peptone water	8	5
	4.3	Culture methods Streak plate technique and isolation of pure colonies. Lawn culture and Liquid culture Pour plate and spread plate techniques.	6	5
	4.4	Staining techniques Simple staining, Grams staining Staining of Yeast cell Negative staining Fungal staining- Lactophenol cotton blue staining	6	5
	4.5	Examination of microbes in living condition Hanging drop method for demonstrating motility of bacteria	4	2
	4.6	Antibiotic sensitivity test Disc Diffusion method	2	4
5		Teacher specific Module		

Teaching and	Classroom Procedure (Mode of transaction)			
Learning				
Approach	Classroom lectures			
	Video presentations			
	Article and general reviews			
	Seminars & group discussions			
	Group assignments & presentations			
	➤ Hands on training			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
	Theory Total=25 marks			
A	Quiz/ Test Papers/ seminars/viva			
Assessment	Practical Total 15 marks			
Types	Lab performance/ record/viva			
	B. End Semester Examination			
	Theory Total 50 marks, Duration 1.5 hrs			
	Short Essays 5 out of 7x4=20 marks			
	Short questions-10 out of 12x2=20 marks			
	Fill in the blanks or one word questions -1x10=10 marks			
	Practicals Total 35 marks Duration- 2 hrs			
	Record 10 marks,			
	Examination 25 marks: Performance of any 3			
	lab experiments-15 marks, spotter identification -			
	5 marks Viva-5marks			

References

- 1. Ananthanarayanan, R& Panicker, C (2007). Textbook of Microbiology. Orient Longman.
- 2. Brown, T.A, Chapman and Hall. Gene cloning: An Introduction. Wiley Blackwell.
- 3. Bryan, E. Antimicrobial Drug Resistance. Academic Press, Inc.
- 4. Chan, P& Kreig. (2001). Microbiology concepts and applications. McGraw Hill Education.
- 5. Collee, J.Mackie and McCartney Practical Microbiology. Elsevier.
- 6. Kreig, N.R. & Wilkins. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Balimore.
- 7. Kucera, S. Fundamentals of Medical Virology. Lea & Febiger.
- Russel, D. (2013). Principles and Practice of Disinfection Preservation and sterilization. Wiley Blackwell.
- 9. Willey, J. (2019). Prescott's Microbiology. McGraw Hill Education.

Programme	BSc (Honours) Biological	l Techniqu	es and Spec	cimen Prepa	ration		
Course Name	CLINICAL BIOCHEMISTRY AND CLINICAL MICROBIOLOGY						
Type of Course	DSE						
Course Code	MG3DSEBTS200	AND					
Course Level	200						
Course Summary	Clinical Biochemistry and Clinical Microbiology is a comprehensive and interdisciplinary course that inspire the students in learning the frontier areas of biological sciences The topics on biochemical analysis, clinical diagnosis and treatment of diseases creates an awareness among students and helps in developing the technical and critical thinking skills to evaluate clinical specimens.						
Semester	Ш	Cre	dits		4		
Course Details	Learning Approach	Lecture 4	Tutorial	Practical 0	Others 0	Total Hours 60	
Pre-requisites, if any	/विद्याश	अर्क्ट्रतर	ਮਕ੍ਰਿਨ				

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Helps to inspire students in learning the frontier areas of biological sciences.	K	2
2	Students will be exposed to fundamentals in Clinical Chemistry and Clinical Microbiology.	U,A,An	2,3,9,10
3	Students will be able to learn the functions and clinical assessment of various organs of human body	U,A	2,3,10
4	Helps to make them aware of the pathogens, health related problems, their origin and treatment.	U	2,3,9,10
5	Students will be able to understand the ssymptoms, causative agents, clinical features, laboratory diagnosis of important Medically important microorganisms	U,A	2,3,9,10
* Daman	hor(K) Understand(U) Apply(A) Analyse (An) Evaluate(E) Cree	to(C) Skill(S)	Intovast(I)

^{*}Remember(K), Understand(U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

Module	Units	Course description	Hrs 60	CO No.
		Lifestyle diseases	15	
1	1.1	An overview of AIDS, Diabetes Mellitus, Obesity, Cancer, Cardiovascular diseases, kidney disorders, liver disorders.	15	1
		Functions of various organs and their clinical assessment	20	
2	2.1	Brief treatment only but emphasizing the biochemical aspect): e.g., liver, kidney, heart, pancreas endocrine glands, lung, brain.	12	2,3
	2.2	Biochemical changes in the organs under pathological conditions	8	2,3
3		Biochemical Tests	10	
	3.1	Routine biochemical tests of blood sugar, cholesterol and NPN	10	
		Microorganisms of medical importance	15	
	4.1	Symptoms, causative agents, clinical features, laboratory diagnosis and treatment of important Bacterial diseases- Diphtheria, Pneumonia, Cholera, Tuberculosis, Salmonellosis, Typhoid	4	6
4	4.2	Symptoms, causative agents, clinical features, laboratory diagnosis and treatment of important Viral diseases - Common cold, Respiratory Syncytial virus infections, Corona virus (SARS).	4	
	4.3	Symptoms, causative agents, clinical features, laboratory diagnosis and treatment of important Fungal diseases - Oral thrush, Aspergillosis	3	4
	4.4	Symptoms, causative agents, clinical features, laboratory diagnosis and treatment of important Parasitic diseases -Symptoms, causative agents, clinical features, laboratory diagnosis and treatment of Malaria, Filariasis, Amoebiasis,	4	4,5
5		Teacher Specific Module		

Teaching & Learning	Classroom Procedure (Mode of transaction)
Approach	ICT Enabled Learning, Experiential learning, Tutorial, Lecturing,
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar/ Activity Report
	B. End Semester examination Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

References

- Ananthanaryanan R. and C.K.J. Panicker (2009) Text book of Microbiology, 9th edition, University Press (India) Pvt. Ltd. Publisher
- 2. Elmer W. Koneman (2006) Color Atlas & Textbook of Diagnostic Microbiology 5th edition, Lippincott Publication
- 3. Cheesbrough, M. (1998) District Laboratory Practice in Tropical Countries Part 1.

 Cambridge Low Price Edition. Cambridge University Press
- 4. Cheesbrough, M. (1998) District Laboratory Practice in Tropical Countries Part 2.

 Cambridge Low Price Edition. Cambridge University Press
- 5. Mukherjee, K.L. (ed,) (1988) Medical Laboratory Technology Vol. 1. TataMcGraw Hill
- 6. Mukherjee, K.L. (ed,) (1988) Medical Laboratory Technology Vol. 2. TataMcGraw Hill
- 7. Mukherjee, K.L. (ed,)(1988) Medical Laboratory Technology Vol. 3. TataMcGraw Hill.
- 8. Philip A. Thomas (2007) Clinical Microbiology, Orient Longman Pvt. Ltd.
- 9. Talaro, K.P., and Talaro, A. (2002). Foundations in Microbiology4th ed. McGraw Hill.

SUGGESTED READINGS

- 1. Boyer, R. F. (2000). Modern experimental biochemistry (3rd ed.). Benjamin Cummings.
- 2. Boyer, R. F. (2012). Biochemistry laboratory: modern theory and techniques (2nd ed.). Prentice Hall.
- 3. Harvey, D. (2000). Modern analytical chemistry. McGraw-Hill.
- 4. Katoch, R. (2011). Analytical techniques in biochemistry and molecular biology. Springer.
- 5. Switzer, R. L. (1999). Experimental biochemistry (3rd ed.). W. H. Freeman and Co

Programme	BSc (Honours) Biologi	cal technic	ques and S	specimen Pr	eparation	
Course Name	AQUARIUM MANAGE	EMENT				
Type of Course	DSE					
Course Code	MG3DSEBTS201					
Course Level	200	GAN	DHI			
Course Summary	development of aquariu up and management of commercial farming te	Course provides knowledge on diversity of ornamental fish and plants, history and development of aquarium keeping and ornamental fish culture, principles of setting up and management of aquaria, breeding biology of various ornamental fishes, commercial farming techniques, seed production, packing and transportation of ornamental fishes, feeding and nutrition of ornamental fishes, prophylaxis and				
Semester	m		Credit	s	4	T 1
Course Details	Learning Approach	Lecture 4	Tutorial	Practical 0	Others	Total Hours 60
Pre- requisites, if any	विद्यय	ा अस	तसङ	AA A		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PO No
1	Introduce the nature and scope of aquarium management and ornamental fish culture	U	2,3,10
2	Impart practical skills to students on aquarium management and ornamental fish culture	S	2,3,10
3	Impart knowledge on self-employment opportunities in ornamental fish culture and Aquarium management.	R	2,3,7,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs. 45	CO No.
	1.1	Diversity of ornamental fish. Contribution of marine and freshwater fishes. Major ornamental fish species of India. Ornamental plants. Ornamental invertebrates.	5	1
1	1.2	History of aquarium fish keeping. Etiology of aquarium. Biotope aquarium. Vivarium, Insectarium, terrarium, paludarium, oceanarium, dolphinarium. Reef aquarium. Nano Aquariums. Role of public aquaria. Aquarium keeping as a hobby.	5	1,2
2	2.1	Principles of setting up and maintenance of aquaria: Construction of aquarium. Aquarium Accessories- aerators, filters, skimmers, chillers, lighting, decorates, etc. Latest trends in Aquarium tanks.	10	3
	2.2	Reproductive biology. Sex determination in ornamental fish. Breeding and seed production of Common ornamental fishes: Construction of breeding tanks. Larval rearing.	10	3
	3.1	Commercial farming technologies. Indigenous ornamental fishes and their culture, propagation and trade. Ornamental aquatic plants: Propagation methods, nutrient and environmental requirement, cropping methods, packing and transport	10	3
3	3.2	Feeding and nutrition of ornamental fishes. Nutritional requirements of aquarium fish. Larval Feeding. Live feed culture. Artemia culture, infusoria, brachionus culture, Formulated feeds. Preparation of aquarium fish food. Common diseases and parasites of freshwater and marine ornamental fish. Health management of aquarium fishes	10	2,3
	3.3	Field Trips and Workshops Visits to public aquariums, fish farms, and aquatic research centers. Hands-on workshops in advanced aquascaping and breeding techniques. Guest lectures from industry professionals and researchers.	10	2,3
4		Teacher specific module		

Teaching and Learning	Classroom Procedure (Mode of transaction)					
Approach	Classroom lectures, Direct Instruction: Brain storming lecture, Explicit					
11	Teaching, E-learning, interactive Instruction, Active co-operative learning					
	Seminar, Group Assignments Authentic learning, Library work and Group					
	discussion, Presentation by individual student/ Group representative					
	MODE OF ASSESSMENT					
Assessment	A. Continuous Comprehensive Assessment (CCA) Theory Total=25					
Types	marks					
	Quiz/ Test Papers/ seminars					
	B. End Semester Examination					
	Theory Total 70 marks, Duration 2 hrs					
	Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16					
	x2=28 Marks, Multiple choice questions-1x10=10 Marks					

REFERENCES

- Alappat, H.J. & Biju Kumar, A. (1996). Aquarium Fishes (A Colourful Profile). B.R.
 Publ., Delhi
- 2. Atz, W. (1971). Aquarium Fishes. Pelham Books Ltd., London.
- 3. Axelrod, H.R. & Vorderwinkler, W. (1962). Encyclopedia of Tropical Fishes with Special Emphasis on Techniques of Breeding. TFH. Publ., Inc., NJ.
- 4. Biju Kumar, A. & Alappat, H.J. (1996). A Complete Guide to Aquarium Keeping. Books for All, Delhi.
- 5. Dholakia, A.D. (2009). Ornamental fish Culture & Aquarium Management. Daya Publishing House, Delhi.
- 6. Faulkner, D. & Atz, J.W. (1971). Aquarium Fishes, Their Beauty, History and Care. Pelham Books, London.
- 7. Favre, H. (1977). Dictionary of the Freshwater Aquarium. Wardlock Ltd., London.
- 8. Frey, H. (1961). Illustrated Dictionary of Tropical Fish. TFH. Publ. Inc., NJ.
- 9. Gohm, D. (1984). Tropical Fish. Hamlyn Publ. Group Ltd., London.
- 10. Gopakumar, G. (2011). Marine Ornamental fish Culture: Package of Practices. CMFRI Cochin.
- 11. ICAR (2011). Handbook of Fisheries and Aquaculture. ICAR, New Delhi.

- 12. Innes, W.T. (1953). Exotic Aquarium Fishes. Innes Publ. Co., Philadelphia.
- 13. Kurup, M.B. (2008). Ornamental Fish Farming, Breeding and Trade. Dept. Fish. Govt.

MGU-UGP (HONOURS)

Syllabus

Programme						
Course Name	DIVERSE ANIMAL LIF	Е				
Type of Course	DSC B					
Course Code	MG3DSCBTS202	AND				
Course Level	200	1				
Course Summary	This course offers a con on Earth, exploring the evectorial roles of differ and representative spenty physiology, behavior, an	volutionary ent animal ecies, em	relationsh groups. It c phasizing	ips, functions covers the ma their morp	al adaptation ajor phyla, c phology,	ns, and
Semester	iii iii	Cre		3//	4	Total Hours
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical 1	Others 0	75
Pre- requisites, if any	/विद्या	असूत	াধার্ল	, a		

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domain*	PO No
1	Understand the evolutionary relationships among major animal groups.	U	2,3,10
2	Recognize the morphological and physiological adaptations of diverse animals.	K	2,3,10
3	Explore the ecological roles and behaviors of different animal species.	S	2,3,10
4	Analyze the impact of environmental changes on animal diversity.	AN	2,3,10
5	Develop an appreciation for the complexity and interdependence of life forms.	AP	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs.	CO
			45	No.
	1.1	Introduction to Animal Diversity: Principles of taxonomy and systematics. Overview of the tree of life and major animal phyla.	5	2
1	1.2	Porifera and Cnidaria Characteristics of sponges (Porifera) and their ecological roles. Cnidarians: jellyfish, corals, and sea anemones.(BRIEF ACCOUNT) Life cycles and symbiotic relationships in Cnidaria(OBELIA). Platyhelminthes and Nematoda Flatworms (Platyhelminthes): free-living and parasitic forms. Eg: Schistosoma, Taenia solium Roundworms (Nematoda): Diversity and Ecological significance. Eg: Wuchereria bancrofti, Ascaris lubricoides Parasitic adaptations and life cycles.	10	2,3,4
2	2.1	Mollusca: overview of molluscan diversity: bivalves, gastropods, cephalopods. Eg: Sepia, sycon and pinctada (Morphological and physiological adaptations). Ecological roles and economic importance of mollusks. Annelida and Arthropod: overview of Annelida and arthropod. Segmented worms (Annelida): earthworms, leeches, and polychaetes. Arthropods: diversity and success of insects, arachnids, crustaceans. Exoskeleton and molting process in arthropods.	10	1,2,4
	2.2	Echinodermata-Echinodermata Characteristics and diversity of echinoderms (Phylum Echinodermata). Overview of major classes: Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea. Echinoderm structure, function, and regeneration.(star fish)	5	2,4
	3.1	Chordate: Overview and Non-vertebrate Chordates Characteristics of the phylum Chordate. Non-vertebrate chordates: tunicates and lancelets. Evolutionary significance of chordate features.	5	3,2

	1	1	1	ı
	3.2	Amphibians Evolution and diversity of amphibians: frogs, salamanders, caecilians. Life cycle and metamorphosis.(frog) Amphibians as ecological indicators.	5	2,4
3	3.3	Reptiles Characteristics and classification of reptiles: turtles, lizards, snakes, crocodilians. Adaptations for terrestrial life. Reptilian reproduction and thermoregulation. Birds Evolution and characteristics of birds.(eg: archaeopteryx) Adaptations for flight: feathers, skeletal modifications, respiratory system. Behavioral ecology and migration patterns.(brief account)	10	1,2,4
	3.4	Mammals Overview of mammalian diversity: monotremes, marsupials, placentals. Characteristics: hair, mammary glands, endothermy. Mammalian reproductive strategies and parental care. Aquatic mammals and its examples Conservation of Animal Diversity Threats to animal diversity: habitat loss, climate change, pollution. Conservation strategies: protected areas, captive breeding, restoration ecology	10	1,3,5
4		PRACTICALS 1. Introduction to laboratory equipment and safety procedures. 2. Microscopy basics: using light and dissecting microscopes. 3. simple identification (5 invertebrate/5 vertebrate organism) 4. Microscopic examination of sponge cells, spicules, honey bee sting 5. Feeding activity of paramecium 6. Identification of protozoans in pond water sample. 7. Field study/museum visit /zoo visit –report	30	
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Classroom lectures					
Approach	Direct Instruction:, Explicit Teaching, E-learning,					
	Interactive Instruction:, Active co-operative learning, Seminar, Group					
	Assignments Authentic learning, Library work and Group discussion,					
	photography					
	Presentation by individual student/ Group representative					
	MODE OF ASSESSMENT					
Assessment	A. Continuous Comprehensive Assessment (CCA)					
Types	Theory Total=25 marks					
	Quiz/ Test Papers/ seminars / entrepreneur interaction					
	Practical Total 15 marks					
	Lab performance/Lab report/ Viva Voice/Field study report					
	B. End Semester Examination					
	Theory Total 50 marks, Duration 1.5 hrs.					
	Short Essays 5 out of 8x4=20 marks					
	Short questions-10 out of 12x2=20 marks					
	Fill in the blanks /MCQ-1x10=10 marks					
	Practicals: Total 35 marks Duration- 2 hrs. Record 10 marks,					
	Examination 25 marks: spotter identification-5marks, viva -5 marks,					
	Experiments- 10 marks. Field study/museum visit /zoo visit -report-5					
	marks.					

References

- 1. Anderson, T.A. (2001). Invertebrate Zoology (2nd edn). Oxford University Press, New Delhi.
- 2. Ashok Verma (2017). Principles of Animal Taxonomy. Narosa Publishing home pvt. Ltd.
- 3. Barnes, R. D. (1987). Invertebrate Zoology. Saunders College Publishing/Harcourt Brace; 5th revised edition.
- 4. Barrington, E. J. W. (2012). Invertebrate Structure and Functions. Affiliated east-west press Pvt. Ltd. New Delhi, 2nd edition.
- 5. David, M. H, Craig Moritz and K.M. Barbara (1996). Molecular Systematics. Sinauer Associates, Inc.
- 6. Hickman Jr., Cleveland, Larry Roberts, Susan Keen, Allan Larson, and David Eisenhour (2011). Animal Diversity. McGraw-Hill Companies, Inc. NY.
- 7. Kapoor, V.C. (2017). Theory and Practice of Animal Taxonomy. 8th edition, Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.

- 8. Margulis, Lynn and M.J. Chapman (2001). Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth (4th edn.). W.H. Freeman & Company, USA.
- 9. Mayer, E. (2014). Principles of Systematic Zoology. 2nd edition, McGraw Hill Book Company, Inc., NY.
- 10. Narendran, T.C. (2008). An introduction to Taxonomy. Zoological survey of India.
- 11. Strickberger, M.W. (2013). Evolution. Jones and Bartlett Publishers, London.
- 12. Simson G. G. (2012). Principles of animal taxonomy. Scientific publishers, India.
- 13. Winston, J.E. (2000). Describing species: Practical Taxonomic Procedures for Biologists. Columbia University Press, Columbia, USA.

MGU-UGP (HONOURS)

Syllabus

MAHATMA GANDHI UNIVERSITY KOTTAYAM

Programme										
Course Name	SCIENCE OF ORGANIC FARMING									
Type of Course	MDC									
Course Code	MG3MDCBTS200	MG3MDCBTS200								
Course Level	200	200								
Course Summary	This course helps stud organic farming and the				s necessary	to practice				
Semester	m Z	Total								
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours				
Details		3 0 0 45								
Pre- requisites, if any	TOTTAYAM									

विद्या अस्तसङ्ग्रह COURSE OUTCOMES (CO)

To equip students with the knowledge and skills necessary to practice organic farming and the production of healthy food To introduce the concept of organic ecosystem and the basics of plant physiology and nutrition U 2,3 To know the importance of soil health in organic farming E 2,3 To inculcate the importance of doing organic farming as the	CO No.	Expected Course Outcome	Learning Domains *	PO No
practice organic farming and the production of healthy food To introduce the concept of organic ecosystem and the basics of plant physiology and nutrition U 2,3 To know the importance of soil health in organic farming E 2,3 To inculcate the importance of doing organic farming as the	1	To introduce the principles and benefits of organic farming	U	2,3,10
of plant physiology and nutrition 4 To know the importance of soil health in organic farming E 2,3 To inculcate the importance of doing organic farming as the	2		A	2,3,10
To inculcate the importance of doing organic farming as the	3	, · · · · · · · · · · · · · · · · · · ·	U	2,3,10
	4	To know the importance of soil health in organic farming	Е	2,3,10
food security.	5	responsibility of every human being to ensure food safety and	С	2,3,7,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs 45	CO No
		Concept of Organic Farming	10	
	1.1	Principles of Organic farming		1
1	1.2	Benefits of Organic farming		1
	1.3	Organic Ecosystem and their concept		3
	1.4	Eco friendly farming-Natural farming, Organic farming and Zero budget farming		1
		Soil and Plant Nutrition	15	
	2.1	Types of soil, Composition of soil, Soil profile, Soil texture and Soil pH		4
	2.2	Role of soil in Organic Farming, Soil health		4
	Soil factors affecting plant growth: light, heat, water, humidity, pH and nutrition			4
2		C: N ratio of good fertile soil		
	2.4	Structural organization & function of different Plant organs		3
	2.5	Plant nutrients- Micro and Macro, Importance & Deficiency symptoms		3
	2.6	Organic manures, Green manure, Methods of composting, Importance of mulching		3
	2.7	Soil microorganism: Mycorrhiza, Rhizosphere- Significance, Role of biofertilizers in crop production		4
		Organic farm management and crop management	15	
	3.1	Land preparation - Tools and Technique		2
	3.2	Preparation of seed bed, manuring, sowing, watering and raising of seedling		2
	3.1	Pest control: Biological and Organic methods		2
3	3.2	Integrated Pest Management		2
	3.3	Crop rotation: Need and benefits		2
	3.4	Harvesting and Post Harvesting Management		2
		Certification and Marketing	5	
	3.5	Inspection, Certification & Labelling procedure		5

	3.6	Marketing & Export	5
4		Teacher Specific Module	

Teaching	Classroom Procedure (Mode of transaction)
and	Lectures, Videos, Seminars, Power point presentations, Organic farm visit and
Learning	Field study.
Approach	AND
	MODE OF ASSESSMENT
Assessment	A. Continuous Communicative Assessment
types	A. Continuous Comprehensive Assessment
	Theory Total 25 Marks
	Quiz/Test Papers/Seminar/ Field Study
	B. End Semester Examination
	Theory: Total - 50 Marks, Duration 1.5 hrs
	Short Essays 5 out of 7 x4 = 20 Marks
	Short questions-10 out of 12x2=20 Marks
	Fill in the blanks -1x10=10 Marks

REFERENCES

- 1. Balasubramanian, R., Balakishnan, K., & Siva Subramanian, K. (2013). Principles and practices of organic farming. Satish Serial Publishing House.
- 2. Dushyent Gehlot. (2005). Organic farming- standards, accreditation, certification, and inspection. Agrobios, India.
- 3. Mukund Joshi, & Prabhakarasetty, T.K. (2006). Sustainability through organic farming. Kalyani publishers, New Delhi.
- 4. Palaniappan, S.P., & Annadurai, K. (1999). Organic farming-Theory and Practice. Scientific publishers, Jodhpur, India.
- 5. Tarafdar, J.C., Tripathi, K.P., & Mahesh Kumar, M. (2009). Organic agriculture. Scientific Publishers, India.
- 6. Tiwari, V.N., Gupta, D.K., Maloo, S.R., & Somani, L.L. (2010). Natural, organic, biological, ecological, and biodynamic farming. Agrotech Publishing Academy, Udaipur.

SUGGESTED READINGS

1. Alvares, C. 1996. The Organic Farming Source Book. The Other India Press, Mapusa, Goa.

- 2. Dongarjal R. P. and Zade S.B. 2019. Insect Ecology and Integrated Pest Management, Akinik Publications, New Delhi.
- 3. Dr. Pratiksha Raghuvanoki. Handbook of Organic Farming.
- 4. Dushyent Gehlot. 2005. Organic Farming- standards, accreditation, certification and inspection. Agribios, India.
- 5. Gupta, M., 2004. Organic Agriculture Development in India. ABD publishers, Jaipur, India.
- 6. Guideline of National Project on Organic Farming, Department of Agriculture and Cooperation, INM Division, Ministry of Agriculture, Govt. of India.
- 7. Organic Farming: The Ecological System- Agronomy Monograph 54, ASA, USA.
- 8. Palaniappan, S.P. and Annadurai, K. 1999. Organic Farming- Theory and Practice, Scientific Publishers, Jodhpur, India.
- 9. Sathe, T.V. 2004, Vermiculture and Organic Farming. Daya Publishers.
- 10. Sharma, Arun K. 2002. A Handbook of Organic farming. Agrobios, India.
- 11. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New Delhi.

	37						
Programme							
Course Name	PUBLIC HEALTH, HYGIENE AND SANITATION: AN						
	AWARENESS						
Type of Course	VAC						
Course Code	MG3VACBTS200						
Course Level	200 GANDA						
Course Summary		This course provides a comprehensive insight into the significance of public health and sanitation in enhancing the overall well-being of communities.					
Semester	m = 1		Credits	罗	3		
Course	Learning					Total	
Details	Approach	Lecture	Tutorial	Practical	Others	Hours	
		3	0	0	0	45	
Pre- requisites, if any	None		Y				

COURSE OUTCOMES (CO) विद्याया अध्यतसञ्जत

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To inculcate a general awareness among the students	K,U	2,3,10
	regarding the real sense of health.		
2	To understand the role of balanced diet in maintaining health.	K,U	2,3,10
3	To motivate them to practice yoga and meditation in daily life.	U, An, E	2,3,6,10
4	To aware them transmission of food and water borne diseases	An, E	2,3,6,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction

Module	Units	Course description	Hrs 45	CO No.
1		Dimensions of Health	12	
	1.1	Definition and meaning of health:	2	1
	1.2	Dimensions of health, physical activity and health benefits, Effects of exercise on body systems	10	1
2		Nutrition and Constituents of healthy life style	25	
	2.1	Constituents of balanced diet	3	2
	2.2	Malnutrition and Deficiency diseases.	3	2
	2.3	Life skill education	2	3
	2.4	Emotional adjustment and well being	6	3
	2.5	Yoga, meditation and relaxation. Psychoneuroimmunology	5	3
	2.6	Life style and hypokinetic diseases.	4	3
	2.7	Health and safety in daily life and at work. Dangers of alcoholic abuse	2	3
3		Introduction to food and water borne diseases	8	
	3.6	Briefly mention botulism, salmonellosis, typhoid, cholera and hepatitis A	4	4
	3.7	Potable water, Determination of quality of drinking water	2	4
	3.8	Water purification techniques.	2	4
4		Teacher specific module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, presentations, videos, group interaction.
Assessment types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment Theory Total 25 Marks Quiz/Test Papers/Seminar/Case study and report writing
	B. End Semester Examination Theory: Total - 50 Marks, Duration 1.5 hrs Short Essays 5 out of 7 x4 = 20 Marks Short questions-10 out of 12x2=20 Marks Fill in the blanks -1x10=10 Marks

References

- 1. Greenberg, J. S., & Dintiman, G. B. (1997). Wellness creating a life of Health and fitness. London: Allyn and Bacon Inc.
- 2. Francis, G., & Mini, K. D. (Eds.). (2012). Zoological society of Kerala. Kottayam.

MGU-UGP (HONOURS)

MGU-UGP (HONOURS)
Syllabus

Programme	BSc (Honours) Biological techniques and Specimen Preparation							
Course Name	GENETIC ENG	INEERING	S AND PLA	ANT TISSUE	CULTURE			
Type of Course	DSC A	DSC A						
Course Code	MG4DSCB TS2	.00	AND	41				
Course Level	300	300						
Course Summary	engineering tool will develop pra modification or	This course aims to provide students with an in-depth understanding of genetic engineering tools, techniques and their applications in biotechnology. Students will develop practical skills in genetic manipulation, gene cloning, and genetic modification of organisms. This course also provides a comprehensive overview of the principles and techniques involved in plant tissue culture						
Semester	IV	Cro	edits		4	Total		
Course Details	Learning Lecture Tutorial Practical Others Approach 3 0 1 Invited lectures 75							
Pre- requisites, if any	NO							

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Understand the fundamental principles and techniques of genetic engineering.	U	2,3,10
2	Develop practical skills in genetic engineering techniques and laboratory procedures.	A, S	2,3,9, 10
3	Gain knowledge of gene expression regulation and genetic modification methods.	K, U	2,3,9, 10
4	Critically assess and interpret scientific literature on genetic engineering.	S, U	2,3,9, 10
5	Understanding the principles theories and application behind plant cell culture techniques	U, A, An	2,3,9, 10
6	Develop proficiency in sterile technique and aseptic handling of cell cultures	U,A,	2,3,9, 10

	Acquiring knowledge of plant cell culture media and their formulation	K,U	2,3,9, 10
8	Gaining hands on experience in plant cell culture	U,S	2,3,9, 10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),
Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs 45	CO No.
		Genetic Engineering	25	
		Fundamentals of Genetic Engineering	6	
1	1.1	Definition, scope, and historical overview of genetic engineering	2	1
	1.2	Techniques for DNA, RNA and plasmid isolation and purification. Methods for quantification and characterization of DNA and RNA samples.	4	1,2
		Recombinant DNA technology- tools and techniques	19	
	2.1	Enzymes- Restriction endonucleases, Polymerases, Ligase, kinases, and phosphatases. Linkers, Adapters and homopolymer tailing.	4	1,2
	2.2	Cloning vectors- Plasmids, phage, cosmid, BAC, and YAC. Expression vectors	3	1,2
2	2.3	Construction of genomic library and cDNA library, PCR technique, Hybridization techniques, Southern, Northern, western. DNA sequencing	5	1,2
	2.4	Methods of gene delivery. Physical, chemical, and biological methods.	3	3
	2.5	Applications of Genetic Engineering: Gene therapy, Metabolite engineering, antisense therapy, Gene Knockout, CRISPR- Cas9 technology	4	
2		Introduction to plant tissue culture	20	
3	3.1	Composition and preparation of plant tissue culture media, Cellular totipotency, clonal propagation	6	5,6.7

	3.2	Callus culture, meristem culture types of haploid culture, Embryo culture and embryo rescue; single cell clones, Endosperm culture, Somatic embryogenesis	6	6,7,8
	3.3	Isolation and fusion of protoplast, Somatic hybridization, Germplasm conservation and cryopreservation	4	5,8
	3.4	Application of plant tissue culture: Application of plant transformation for enhanced quality: Herbicide resistance, insect resistance, abiotic stresses, Plantibodies	4	4
		PRACTICALS	30	
	4.1	Introduction to Laboratory Techniques	4	
		Safety guidelines and laboratory protocols, Aseptic techniques and proper handling of materials.		
	4.2	GENETIC ENGINEERING	15	
		Nucleic Acid Extraction ,Quantification and amplification		
4		DNA extraction from different sources (e.g., bacteria, plant, animal), Quality assessment and quantification of nucleic acids (spectrophotometry, gel electrophoresis), Polymerase Chain Reaction (PCR) and Agarose gel electrophoresis for PCR product analysis		2
	4.3	PLANT TISSUE CULTURE	11	
		Media formulation for plant tissue culture and surface sterilization, callus induction and auxillary bud culture, Isolation of protoplast		8
5		Teacher specific module		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lectures, presentations, videos, group interaction.
Approach	
	MODE OF ASSESSMENT
Assessment types	A. Continuous Comprehensive Assessment(CCA)
	Theory Total 25 Marks
	Quiz/Test Papers/Seminar/Case study and report writing

B. End Semester Examination

Theory: Total - 50 Marks, Duration 1.5 hrs

Short Essays 5 out of 7 x4 = 20 Marks

Short questions-10 out of 12x2=20 Marks

Fill in the blanks -1x10=10 Marks

Practicals Total 35 marks Duration-2 hrs

Record 10 marks

Examination 25 marks: Performance of Experiments 16 marks

Viva-4 marks, research institute visit report- 5 marks

References

- 1. Brown, T.A. (2017). Genome 4 (4th ed.). Garland Science. ISBN: 978-0815345084.
- 2. Brown, T.A. (2018). Genomes (4th ed.). Garland Science. ISBN: 978-08153450
- 3. Brown, T.A. (2019). Gene Cloning and DNA Analysis: An Introduction (7th ed.). Wiley Blackwell. ISBN: 978-1119072560.
- 4. Chawla, H. S. (2002). Biotechnology in Crop Improvement. CRC Press.
- 5. Gupta, P. K. (2019). Elements of Biotechnology. Rastogi Publications.
- 6. Hammond, J., et al. (2017). Plant Biotechnology. Springer Verlag.
- 7. Henry, R. J. (1998). Practical Application of Plant Molecular Biology. Chapman & Hall.
- 8. Lesk, A.M. (2015). Introduction to Genomics (2nd ed.). Oxford University Press India. ISBN: 978-0198745891.
- 9. Primrose, S.B., & Twyman, R. (2016). Principles of Gene Manipulation and Genomics (8th ed.). Wiley Blackwell. ISBN: 978-1405156660.
- 10. Primrose, S.B., & Twyman, R. (2019). Principles of Gene Manipulation and Genomics (9th ed.). Wiley Blackwell. ISBN: 978-1119163774.
- 11. Razdan, M. K. (2003). An Introduction to Plant Tissue Culture. Springer.
- 12. Singh B.D Biotechnology 2002. Kalyan Publishers New Delhi.
- 13. Snyder, M. (2016). Genomics and Personalized Medicine: What Everyone Needs to Know (1st ed.). OUP-USA. ISBN: 978-0190234768.
- 14. Vasil, A. K. (1984). Cell Culture and Somatic Cell Genetics of Plants (Vols. 1-3). Academic Press.
- 15. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., & Losick, R. (2014). Molecular Biology of the Gene (7th ed.). Pearson. ISBN: 978-0321762436.

SUGGESTED READINGS

- 1. Burrell, M.M. (2015). Introduction to Genomics and Proteomics (2nd ed.). Wiley. ISBN: 978-0470850075.
- 2. Fowler, M.R. (2019). Genetic Engineering: Principles and Methods (3rd ed.). CABI. ISBN: 978-1789240605.
- 3. Gibson, G., & Muse, S.V. (2019). Genomics: The Science and Technology Behind the Human Genome Project (2nd ed.). Oxford University Press. ISBN: 978-0198786207.
- 4. Ginsburg, G.S., & Willard, H.F. (2014). Genomic Medicine: Principles and Practice (2nd ed.). Oxford University Press. ISBN: 978-0199334468.
- 5. Ginsburg, G.S., & Willard, H.F. (2016). Essentials of Genomic and Personalized Medicine (2nd ed.). Academic Press. ISBN: 978-0124078652.
- 6. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., & Doebley, J. (2020). Introduction to Genetic Analysis (12th ed.). W.H. Freeman. ISBN: 978-1319149609.
- 7. Katz, L.A., & Bhattacharya, D. (2019). Genomics and Evolution of Microbial Eukaryotes (1st ed.). Oxford University Press. ISBN: 978-0198830202.
- 8. Krebs, J.E., & Goldstein, E.S. (2020). Molecular Genetics and Genomics (1st ed.). Jones & Bartlett Learning. ISBN: 978-1284154544.
- 9. Pevsner, J. (2015). Bioinformatics and Functional Genomics (3rd ed.). Wiley-Blackwell. ISBN: 978-1118581780.
- Wichard, J., & Maertens, A. (2019). Genomic Approaches for Cross-Species Extrapolation in Toxicology (1st ed.). CRC Press. ISBN: 978-0815348023.
- 11. Wonkam, A., Puck, J.M., & Marshall, C.R. (2019). Genomic Medicine in Resource-limited Countries: Genomics for Every Nation (1st ed.). Academic Press. ISBN: 978-0128133003

Programme	BSc (Honours) Biologica	SSc (Honours) Biological Techniques and Specimen Preparation							
Course Name	CELL BIOLOGY	CELL BIOLOGY							
Type of Course	DSC A	DSC A							
Course Code	MG4DSCBTS201	- 110							
Course Level	200	200 GANDA							
Course Summary		This course provides a comprehensive understanding of the basic principles and complex processes that govern the biology of cells.							
Semester	IV		Credits	ERS	4	Total			
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours			
Details	10	3	0	1	Invited lectures	75			
Pre- requisites, if any	NO			/IIIE-					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Expected Course Outcome	Learning Domains*	PO No
1	Deep understanding of the structure and function of cells and the processes that govern their behaviour	U, K	2,3,9,10
2	Demonstrate knowledge of cellular processes, including cell division, protein synthesis, and signal transduction	U, K, A	2,3,9,10
3	Develop critical thinking, skill and research aptitudes in basic and applied biology	A, S	2,3,9,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module			Hrs 45	CO No.
		CYTOLOGY AND CYTOSKELETON	21	
1	1.1	Overview of cells: cell theory, Prokaryotic and eukaryotic cell, General organization of eukaryotic and prokaryotic cell Evolution of eukaryotic cell. Plant cell and animal cell.	5	1
	1.2	Structure and functions of cell organelle; nucleus, mitochondria, chloroplast, ribosomes, peroxisomes, Golgi bodies, Lysosomes, Vacuoles and endoplasmic reticulum.	8	1,2
	1.3	Chromosomes – structure of a typical metaphase chromosome - centromere, telomere, chromomere, satellite DNA, nucleosome organization -histones, linker DNA. Polytene chromosomes-Balbiani rings, Lamp brush chromosomes.	5	1,2
	1.4	Cytoskeletal elements: Structure & functions of Microtubule, Microfilaments and intermediate filaments.	3	1,2
		PLASMA MEMBRANE AND MEMBRANE TRANSPORT	8	
2	2.1	Plasma membrane: Structure, functions, and various models of plasma membrane. Membrane transport - active, passive, facilitated - symport, antiport	2	1,2
	2.2	Cell junctions: Tight junctions, Gap junctions, Desmosomes, Hemi desmosome	3	1,2
	2.3	Cell-cell interaction - selectins, integrins, cadherins,	3	1,2
		CELL CYCLE AND CELL SIGNALLING:	16	
3	3.1	Cell cycle studies; mitosis and meiosis. Regulation of Cell Cycle-Role of cyclins and cyclin-dependent kinases, Cell cycle checkpoints	8	2,3
	3.2	Cell Birth, lineage and death, Cellular senescence and ageing, Apoptosis and Necrosis	3	2,3
	3.3	Signalling molecules and cell surface, receptors; intracellular signal transduction; G protein coupled receptors; plant growth factors and hormones,	5	2,3

		endocrine signalling, quorum sensing and intercellular signalling, Signal peptides, biofilm formation		
4		PRACTICALS	30	
	4.1	Examination of different kinds of cells - Prokaryotic and eukaryotic cell	4	3
	4.2	Identification of cell organelles	4	3
	4.3	Micrometry: a) Calibration using ocular micrometer b) Finding out average cell size	4	3
	4.4	Mounting of polytene chromosome (Drosophila/Chironomous.)	6	3
	4.5	Study of Barr body in human buccal epithelium	4	3
	4.6	Demonstration Squash preparation of onion root tip for mitotic stages	4	3
	4.7	Study of various stages of meiosis	4	3
5		Teacher specific module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, group interaction, seminar, presentations Teaching aids like photographs, models, videos related to the topic can be used
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars Practical Total 15 marks Lab performance/ record

B. End Semester Examination

Theory Total 50 marks, Duration 1.5 hrs

Short Essays 5 out of 7x4=20 marks Short questions-10 out of 12x2=20 marks Fill in the blanks -1x10=10 marks

Practicals Total 35 marks Duration- 2 hrs Record 10 marks,

Examination 25 marks:

Performance of experiment 20 marks, Viva-5marks,

References

- 1. B D Singh. (2011). Fundamentals of Genetics. Kalyani Publishers.
- 2. Gardner, A. G. (2020). Principles of Genetics. John Wiley and Sons.
- 3. Griffiths, A., Wessler, S., Lewontin, R., Gelbart, W., Suzuki, D., & Miller, J. (2000). Introduction to Genetic Analysis. Freeman's and Co.
- 4. Karp, G. (2019). Cell and Molecular Biology. Academic Press
- 5. Lodish, H., et al. (2016). Cell Biology. W H Freeman and Co.
- 6. Pollard, T. D., & Earnshaw, W. C. (2002). Cell Biology. Saunder's Publishers.
- 7. Snustad, D., Simmons, M., & Jenkins, J. (2016). Principles of Genetics. John Wiley And Sons Inc.
- 8. Pollard, T. D., & Earnshaw, W. C. (2016). Cell Biology. Saunder's Publishers.
- 9. Becker, W. M., Reece, J. B., & Poenie, M. (2019). World of the Cell. The Benjamin/Cumming's Pub.

MGU-UGP (HONOURS)

Syllabus

Programme	BSc (Honours) Biologica	l techniqu	es and Spe	cimen Prepa	aration				
Course Name	ENZYMOLOGY								
Type of Course	DSE								
Course Code	MG4DSEBTS200	ABIT							
Course Level	200								
Course Summary	mechanisms of enzyme technology. The applicat pharmaceuticals, and bio	The course on enzymology provides an in-depth understanding of the principles and mechanisms of enzyme action, enzyme kinetics, enzyme regulation, and enzyme technology. The applications of enzymes in various industries such as food, pharmaceuticals, and biotechnology are covered along with topics such as enzyme immobilization, enzyme purification and enzyme characterization							
Semester	IV Credits 4 Total								
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practical 0	Others 0	Hours 60			
Pre- requisites, if any	NO	2105(াবাব্			,			

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To understand the basic principles of enzymes and their role in biological processes.	U,K	2,3,10
2	To learn the mechanism of action of enzymes and understand the kinetics of enzyme action.	U,K	2,3,10
3	To gain knowledge of various techniques used in enzyme purification and characterization.	U,A	2,3,10
4	To evaluate the broad spectrum applications of enzymes	U,A	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Units	Course description	Hrs	CO No.
1	1.1	Introduction to enzymes Historical account, general properties and nature of enzymes Classification and nomenclature of enzymes.	4	1
		Cofactors and coenzymes. Apoenzymes and holoenzymes		
	1.2	Specificity of enzymes, active site and features, Active site mapping Fischer and Koshland hypothesis. Proenzymes and multi enzyme complexes	5	1
	1.3	Enzymes involved in digestion. Enzymes in metabolic pathways with suitable examples.	5	1,2
2	2.1	Mechanism of Enzyme action Activation energy,transition state. Mechanism of catalysis with suitable examples on role of metal ions and coenzymes. Acid base catalysis and covalent catalysis	5	1,2
	2.2	Enzyme kinetics, Terms used in enzyme kinetics. ES Complex and Michaelis-Menten Equation and Hill Equation	6	2
	2.3	Enzyme Inhibition Reversible and Irreversible Inhibitors Competitive, Non competitive and uncompetitive inhibitions. Enzyme regulation; Allosteric, Feed back and covalently regulated enzymes	8	1,2
3	3.1	Methods employed in extraction and purification of enzymes. Precautions to be adopted in enzyme purification	5	3
	3.2	Subcellular fractionation and centrifugation, salting out, techniques in electrophoresis and chromatography	5	3
	3.3	Methods of protein estimation.ELISA and Western blotting.	5	3
4	Enzymes in Clinical biochemistry Enzymes used in clinical diagnosis and clinically useful inhibitors with suitable examples, Isoenzymes, Enzyme immobilization Therapeutic enzymes			4

	Enzyme Technology			
	4.2	Industrial application of enzymes	6	4
		Enzymes used in food and dairy industry		
5		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)			
Teaching and Learning	Classroom Procedure			
Approach	Lectures, group interactions, group seminar, power point presentations			
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources			
	MODE OF ASSESSMENT			
Assessment	A. Continuous Comprehensive Assessment (CCA)			
Types	Theory Total = 30 marks			
	Test Papers/Assignments/Seminars			
	B. End Semester examination			
	Theory Total = 70 marks (Duration 2 hrs)			
	Short essays (8 out of 10) X 4= 32 marks			
	Short Questions (14 out of 16) X 2= 28 marks			
	Multiple Choice Questions $(1X 10) = 10$ marks			

References

MGU-UGP (HONOURS)

- 1. Bender, D., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2018). Harper's Illustrated Biochemistry. New York, NY: McGraw-Hill Education.
- 2. Jain, J. L., Jain, S., & Jain, N. (2016). Fundamentals of Biochemistry. New Delhi, India: Jaypee Brothers Medical Publishers.
- 3. Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry. New York, NY: W. H. Freeman.
- 4. Satyanarayana, U., &Chakrapani, U. (2019). Biochemistry (4th ed.). New Delhi, India: Elsevier Books and Allied (P) Ltd.
- 5. Sawhney, S. K., & Singh, R. (2016). Introductory Practical Biochemistry. New Delhi, India: Narosa Publishing House.
- 6. Thimmaiah, S. K. (Ed.). (2015). Standard Methods of Biochemical Analysis. Ludhiana, India: Kalyani Publishers.

- 7. Voet, D., Voet, J. G., & Pratt, C. W. (2016). Principles of Biochemistry. New York, NY: Wiley.
- 8. Vasudevan, D. M., & Sreekumari, S. (2014). Textbook of Biochemistry. New Delhi, India: Jaypee Brothers Medical Publishers.
- 9. Rao, B. S., & Deshpande, V. (Eds.). (2017). Experimental Biochemistry: A Student Companion. New Delhi, India: I. K. International Pvt. Ltd.

SUGGESTED READINGS

- 1. Aehle, W. (2007). Enzymes in Industry: Production and Applications. Weinheim, Germany: John Wiley & Sons Inc.
- 2. Berg, J. M., Tymoczko, J. L., &Stryer, L. (2002). Biochemistry. New York: W. H. Freeman.
- 3. McKee, T., & McKee, J. R. (2003). Biochemistry: The Molecular Basis of Life. New York: Oxford University Press.
- 4. Palmer, T., & Bonner, P. (2007). Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (2nd ed.). Chichester, West Sussex, England: Horwood Publishing Limited.

MGU-UGP (HONOURS)

Syllabus

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	RESEARCH METHODOLOGY AND BIOSTATISTICS					
Type of Course	DSE					
Course Code	MG4DSEBTS201					
Course Level	200	SAN				
Course Summary	This course aims to provide a comprehensive understanding on the research methodologies used in biosciences. The development of critical thinking skills and the techniques and tools required to design and conduct scientific research are learned. The statistical methods for analyzing and evaluating data, developing critical thinking skills and the ability to evaluate and interpret scientific literature are emphasized along with methods to communicate and present research findings.					
Semester	IV	Credits			4	
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
Details	विद्याया	314 <u>1</u>	नसङ्	0	0	60
Pre- requisites, if any	None MGII-II	GP (F	IONO	LIRS)		•

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To understand the fundamental principles and concepts of research methodology and design.	U,K	1,2,3,10
2	To gain skills in designing and conducting experiments, including hypothesis formulation, sample collection, and experimental design.	U,E	1,2,3,10
3	To learn methods of data collection, analysis, and interpretation using appropriate statistical methods.	U,A	1,2,3,10
4	To evaluate and observe research articles and scientific literature for enhancing scientific writing skills, including the preparation of research proposals, reports, and manuscripts.	U	1,2,3,10
5	To communicate research findings effectively through written reports and presentations.	A,S	1,2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENTContent for Classroom transaction (Units)

Module	Units	Hrs	CO No.	
			60	
1	1.1	Introduction to Research- Definition, Objectives and characteristics of research.	5	1
	1.2	Types of Research- Basic, Applied and Action research, Exploratory and Descriptive, Ex-post facto research.	5	1
	1.3	Identification of Research Problem Sources of research problem, Criteria for the selection of research problem. Research design, Rationale, Statement of problem, Setting objectives. Definition of concepts, operational definition, variables independent and dependent, control and intervening variables, limitations and delimitation. Hypothesis - Meaning and importance, types of hypotheses.	5	1,2
2	2.1	Methods of Collecting Primary Data- Questionnaire, preparation of schedules, interview method, case study method, experimentation method and sources of secondary data. Editing and Coding the Data	5	2,3
	2.2	Organization of Data - Classification - meaning and objectives, types of classification. Representation of Data - Diagrammatic and graphical representation - significance of diagrams and graphs - general rules for constructing diagrams - types of diagrams, graphs of time series, graphs of frequency distribution. Interpretation and Report Writing-Meaning of interpretation, precautions and essentials for good report, footnotes and bibliographical citations	5	2,3
	2.3	Methods - Survey, observation, interview, experimental, clinical methods. Tools Questionnaire, Schedule (for interview and observation) Rating Scales, Attitude Scales. Reliability and validity.	5	3
3	3.1	Introduction to Biostatistics: Variable and attribute; Population vs. sample; Census vs sample survey;;	5	3
	3.2	Arrangement of data; Frequency distribution. Graphical presentation of data: Line diagram; Bar diagram, Pie chart; Histogram,	5	3
	3.3	Level of significance, Probability, Normal distribution, Error of inference, Student's t-test, Paired t-test, Fisher's t-test, Chi-square test and ANOVA. Introduction to SPSS	5	3
	4.1	Structure and Components of Research Reports Types of Reports Layout structure and language of typical reports	5	4

4	4.2	Preparation of Project Proposal Title, Abstract, Introduction-Rationale, Objectives, Methodology- Time frame and work plan, Budget and justification, References		
	4.3	Preparing research paper for journals, seminars and conferences. Impact factor of a journal, citation index, ISBN & ISSN	5	5
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)							
Learning Approach	ectures, group interactions, group seminar, power point presentations. Solving roblems in biostatistics							
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources							
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars							
	B. End Semester examination Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks							

MGU-UGP (HONOURS)

- 1. Bandarkar, P.L. & Wilkinson, T.S. (2000). Methodology and Techniques of Social Research. Himalaya Publishing House.
- 2. Batnagar, G.L. (1990). Research Methods and Measurements in Behavioural and Social Sciences. Agri. Cole Publishing Academy.
- 3. Biju, Dharmapalan. (2012). Scientific Research Methodology. Narosa Publications.
- 4. Gupta, S.F. (2002). Statistical Methods. Sultana Chand and Sons, 3rd Revised Edition.
- 5. Kothari, C.R. (2000). Research Methodology- Methods and Techniques (2nd ed.). New age International (P) Ltd. Publishers.
- 6. Mukherjee, R. (1989). The Quality of Life: Valuation in Social Research. Sage Publications.

SUGGESTED READINGS

- 1. Babbie, E. (2016). The practice of social research. Cengage Learning.
- 2. Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches.

Sage publications.

- 3. Leedy, P. D., & Ormrod, J. E. (2014). Practical research: Planning and design. Pearson.
- 4. Rosner, B. (2015). Fundamentals of biostatistics. Cengage Learning.
- 5. Sullivan, L. M. (2018). Essentials of biostatistics in public health. Jones & Bartlett Learning research: Planning and design. Pearson.

MGU-UGP (HONOURS)

Syllabus

Programme										
Course Name	THE MOLECULES OF LIFE									
Type of Course	DSC-B									
Course Code	MG4DSCBTS202									
Course Level	200	200								
Course Summary	importance in the variou base for the students to	The course is designed to get a clear idea on the basic biomolecules and their importance in the various biochemical processes in life so that the course builds a base for the students to comprehend and articulate the advanced concepts in life sciences. The basic laboratory practices and study of biochemical analysis are also incorporated								
Semester	IV 3		Credits		4	Total				
Course Details	Learning Approach	Learning Approach Lecture Tutorial Practical Others 3 0 1 0 75								
Pre- requisites, if any	विद्या अस्तमञ्जूते									

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To identify the different types of biomolecules such as lipids, carbohydrates, proteins and nucleic acids	U	2,3,10
2	To differentiate the structural and functional characters of different biomolecules	A	2,3,10
3	To understand the coordinated functions of different biomolecules in a complex living system	A/An	2,3,10
4	To compare the structure and functions of biomolecules	A	2,3,10
5	To describe the structure and functions of vitamins and hormones	U	2,3,10
6	To gain experience in basic laboratory practices in biochemistry and qualitative analysis of carbohydrates and proteins	A	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Carbohydrates: Classification of Carbohydrates with examples- monosaccharides, disaccharides and oligosaccharides; their structure and functions;	5	1,2,3,4
		Polysaccharides - occurrence, structure, isolation, properties and functions of homoglycans- starch, glycogen, cellulose, dextrin.		
1	1.2	Occurrence, structure, properties, and functions of heteroglycans – bacterial cell wall polysaccharides, glycoaminoglycans, agar, blood group substances and sialic acids. Glycolipids and Glycoproteins and their biological applications.	5	1,2,3,4
	1.3	Lipids: Classification of lipids with examples; their structure and functions.	5	1,2,3,4
	1.4	Complex lipids- phospholipids -classification, structure and functions. Amphipathic lipids -membranes, micelles, emulsions and liposomes Ceramides and sphingomyelins. Eicosanoids, structure and functions of prostaglandins, thromboxanes, leukotrienes Types and functions of plasma lipoproteins	3	1,2,3,4
	1.5	Steroids -cholesterol structure and biological role -bile acids, bile salts. Sterols in Plant system: Phytohormones: Brassinosterroids (functions); Sterols in microbial system: mycosterols.	2	1,2,3,4
	2.1	Proteins: Amino acids- Structure and properties, Classification of proteins on the basis of solubility and shape, structure, and biological functions Denaturation and renaturation of proteins.	3	1,2,3,4
2	2.2	Primary structure -determination of amino acid sequence of proteins. Ramachandran plot, Secondary, tertiary and quaternary structures of proteins. Study with appropriate examples and functions	3	1,2,3,4
	2.3	Nucleic Acids : Components of nucleic acids, Nucleotide structures, Watson - Crick model of DNA structure. A, B and Z DNA	3	1,2,3,4
	2.4	RNA Structure: Types of RNA; structure of mRNA, tRNA and rRNA,Si RNA, micro RNA with emphasis on importance of structure to its function	3	1,2,3,4
3	3.1	Vitamins: Vitamins -water soluble -thiamine, riboflavin, niacin, pyridoxine, folic acid, ascorbic acid-source, structure, biochemical functions, deficiency diseases, daily requirements	5	5

	3.2	Fat soluble -vitamin A, vitamin D2, vitamin E and vitamin K -sources, structure, biochemical functions, deficiency diseases, daily requirements.	3	5
	•			T
	3.3	Hormones: different types, structures, their biological functions and disorders.	3	5
	3.4	Mechanism of action of peptide and steroid hormones	2	5
		Techniques in Biochemistry Laboratory- Practicals	30	
	4.1	Laboratory Safety Practices, Preparation of normal, molar, percentage solution and dilution of stock solutions	5	6
4	4.2	Determination of pH by using pH meter. Preparation of reagents involved in qualitative analysis	10	6
	4.3	Systematic analysis of carbohydrates and proteins in the given unknown samples. Quantitative Analysis of Protein by Biuret Method	15	6
5		Teacher Specific Module		

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Lectures, group interactions, group seminar, power point presentations				
Approach	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources				
	MODE OF ASSESSMENT				
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers / Assignments / Seminars				
	Test Papers/Assignments/Seminars Practical 15 marks				
	B. Semester End examination Theory Total = 70 marks (Duration 2 hrs)				
	Short essays (8 out of 10) X 4= 32 marks				
	Short Questions (14 out of 16) X 2= 28 marks				
	Multiple Choice Questions $(1X 10) = 10$ marks				
	Practical 35 marks, record-10 ,examination 25 marks				

- Nelson, D. L., & Cox, M. M. (2004). Lehninger Principles of Biochemistry (4th ed.).
 W. H. Freeman.
- 2. Voet, D., &Voet, J. G. (2004). Biochemistry [with Cdrom]. John Wiley & Sons Inc.
- 3. Zubay, G. L., Parson, W. W., & Vance, D. E. (1995). Principles Of Biochemistry. Mcgraw-Hill Book Company–Koga.

- 4. Berg, J. M., Tymoczko, J. L., &Stryer, L. (2007). Biochemistry (6th ed.). B.i. Publications Pvt. Ltd.
- 5. Rastogi. (2008). Biochemistry. Mcgraw Hill.

MGU-UGP (HONOURS)

Syllabus

6. West, E. S., Todd, W. R., Mason, H. S., & van Bruggen, J. T. (1974). A Text Book of Biochemistry. Oxford and IBH Publishing Co.

SUGGESTED READINGS

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014).
 Molecular Biology of the Cell (5th ed.). Garland Science. ISBN-10: 0815341059,
 ISBN-13: 978-0815341055
- Baker, T. A., Bell, S. P., & Watson, J. D. (2008). Molecular Biology Of The Gene 5/e
 (s). Dorling Kindersley (India) Pvt Ltd. ISBN: 8177581813, ISBN-13: 9788177581812, 978-8177581812
- 3. Lewin, B. (2008). Genes IX. J&b. ISBN: 0763752223, ISBN-13: 9780763752224, 978-0763752224

MGU-UGP (HONOURS)
Syllabus

	1								
Programme									
Course Name	HUMAN RIGHTS AND GENDER EQUALITY								
Type of Course	VAC	VAC							
Course Code	MG4VACBTS200								
Course Level	200	200 GANDA							
Course Summary	human rights issues and e for human rights in their empower students to become	The course aims to provide students with a comprehensive understanding of human rights issues and equip them with the knowledge and skills to advocate for human rights in their personal and professional lives. The course aims to empower students to become informed and active global citizens committed to promoting and protecting human rights for all individuals.							
Semester	IV		Credits	8	3				
Course Details	Learning Approach Lecture Tutorial Practical Others Hours 3 0 0 0 45								
Pre- requisites, if any	विद्या अस्तसञ्जते								

	MGU-UGP (HONOURS)		
CO No.	Expected Course Outcome	Learning Domains *	PO No
1	To develop the real sense of Human rights – its concepts & manifestations	U,K	1,2,3,10
2	Developing a comprehensive understanding of human rights principles, laws, and mechanisms	K,U,A	1,2,5,6,7,10
3	Critical analysis of human rights issues, advocate for social justice, and effectively communicate ideas and perspectives on human rights violations.	U,A,An	2,5,6,7,10
4.	Develop a critical understanding of the social construction of gender and its impact on individuals and society.	U,A,An,E	2,5,6,7,10
5.	Identify and critique systems of power and privilege that perpetuate gender inequality	A,An,E	2,5,6,7,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Historical development of human rights	2	1
	1.2	Main concepts associated with Human Rights	2	1,2
1	1.2	International human rights laws and treaties	2	1,2
	1.3	Different categories of rights (civil, political, economic, social, and cultural)	3	1
	2.1	Constitutional provisions related to Human rights	3	2
2	2.2	Governments and non-governmental organizations in promoting and protecting human rights	3	2
	2.3	Mechanisms for checking violations of human rights	4	2
	2.4	National human right commission	1	2
	3.1	Conceptualizing Gender: Sex and Gender, Types of Gender. Concepts in relation with Gender-Gender needs, Gender Roles, Gender Stereotyping, Gender Discrimination, Gender Identity.	3	4
3	3.2	Gender in India: Gender Status and gender disparity in Education, Labour force participation Political participation, Health. Gender and Media- Role of Media in constructing ideologies, Gender sensitivity, Gender equality, Gender and development	3	4
	3.3	Gender based violence- Sexual abuse, Domestic Violence, Female infanticide, dowry death, workplace harassment.	3	4,5
	3.4	Legal and Statutory Remediation, Remedies and Support	3	2
	3.5	Current human rights issues and challenges.	3	2,5
	3.6	Case studies and report writing	10	3,5
4		Teacher specific module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, presentations, videos, debate, group interaction
Assessment types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment Theory Total 25 Marks Quiz/Test Papers/Seminar/Case studies and report writing
	B. End Semester Examination Theory: Total - 50 Marks, Duration 1.5 hrs Short Essays 5 out of 7 x4 = 20 Marks Short questions-10 out of 12x2=20 Marks Fill in the blanks -1x10=10 Marks

- 1. Agarwal, H.O. (2018). Human Rights. CLP.
- 2. Agarwal, H.O. (2019). International Law and Human Rights. CLP.
- 3. Bhasin, K. (2000). Understanding gender. Kali for women, N. Delhi.
- 4. Chitnis, V., et al (1997). Human Rights and the Law: National and Global Perspective: Ketan Thakkar for Snow White Publications Pvt. Limited,
- 5. Deshpande, B.A. (2017). Human rights- Law and Practice. CLP.
- 6. Dharmadhikari, D.M. (2016). Human Values and Human Rights. Lexis Nexis.
- 7. Gupta, K.R. (2009). Gender: Problems and policies. New Delhi: Atlantic Publishers.
- 8. Jain, R. (2016) Text book on Human Rights Law and Practice. Lexis Nexis.
- 9. Kumar Sinha, M (2013). Implementation of Basic Human Rights. Lexis Nexis.
- 10. Mukherjee, M. (1992). Human Rights and gender issues. New Delhi: Institute of Social Sciences.
- 11. Pal, M. (2009). Gender and Discrimination: Health, Nutritional status and role of women in India. London: Oxford University Press.

4									
Programme									
Course Name	BASIC MO	BASIC MOLECULAR TECHNIQUES							
Type of Course	SEC	SEC							
Course Code	MG4SECBT	S200							
Course Level	200 GANDA								
Course Summary	Participants will learn about DNA extraction, PCR, and gel electrophoresis. The course focuses on troubleshooting common issues and optimizing experimental protocols. By the end of the course, participants will have a solid understanding of these techniques and be able to apply them to their own research projects.								
Semester	IV		Cree	dits	2//	3	Total		
Course Details	Learning Approach	Lecture 3		Tutorial 0	Practical 0	Others 0	Hours 60		
Pre- requisites, if any	None	TAUL BUT		1773	/III/				

CO No.	Expected Course Outcome OURS)	Learning Domains *	PO No
1	To develop basic laboratory skills such as safety protocols, proper handling of equipment and chemicals, accurate measurement techniques, data analysis, and interpretation of results	U, A, An, S	1,2,3,10
2.	To gain proficiency in various laboratory techniques such as DNA isolation, PCR, gel electrophoresis	U, A, An E,S	1,2,3,,9,10
3.	To develop a strong understanding of molecular biology concepts, experimental design, data analysis, and interpretation	U,A An ,S	
4	To equip students with the practical skills and knowledge needed to excel in research	A, An E,C,S	

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction

Module	Units	Course description	Hrs 60	CO No.
		General laboratory Practices	15	
	1.1	General laboratory rules and procedures in a Molecular biology laboratory.		1
	1.2	General Rules/Protocols for Lab Safety measures, Precaution and Safety in handling of chemicals, Laboratory tools, Glasswares and instruments.		1
1.	1.3	Laboratory Standard Operating Procedures and Log book maintenance. Instruments and Apparatus: pH meter, Spectrophotometer, UV Transilluminator, water bath, weighing balance and micropipettes.		1
	1.4	Preparation of Standard Solution and Buffers used in molecular iology labs.		1
	1.5	sterilization techniques: moist heat and dry heat sterilization.		1
	1.6	Storage facilities of chemicals and reagents.		1
		Isolation of DNA	20	
2.	2.1	Isolation of genomic DNA from bacteria.		2,3,4
	2.2	Isolation of genomic DNA from plant tissue.		2,3,4
	2.3	Isolation of plasmid DNA from bacterial cells.		2,3,4
		Polymerase Chain Reaction and Agarose Gel Electrophoresis	25	
3.	3.1	Polymerase chain reaction: Reagents of PCR, Preparation of master mix, PCR programming.		2,3,4
	3.2	Preparation of Agarose gel, role of Gel loading dye and Ethidium bromide, preparation of TAE buffer, Visualisation and Interpretation of gel.		2,3,4
4.		Teacher specific module		

	Classroom Procedure (Mode of transaction)		
Teaching and Learning Approach	Lectures, presentations, videos, Experiential learning, hands on training		
	MODE OF ASSESSMENT		
Assessment types	A. Continuous Comprehensive Assessment Theory Total 25 Marks		
	Quiz/Test Papers/Seminar/Viva		
	B. End Semester Examination		
	Theory: Total - 50 Marks, Duration 1.5 hrs		
	Short Essays 5 out of 7 x4 = 20 Marks		
	Short questions-10 out of 12x2=20 Marks		
	Fill in the blanks -1x10=10 Marks		

- Innis, M. A., Gelfand, D. H., & Sninsky, J. J. (1990). PCR Protocols: A Guide to Methods and Applications. San Diego, CA: Academic Press.
- 2. Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Thieman, W. J., & Palladino, M. A. (2011). Laboratory Techniques in Biotechnology.

MGU-UGP (HONOURS)
Syllabus

Programme	BSc (Honours) Biological Techniques and Specimen Preparation						
Course Name	DEVELOPMENTAL F	BIOLOGY					
Type of Course	DSC A						
Course Code	MG5DSCBTS300						
Course Level	300 G	ANDA					
Course Summary		The course is designed to equip students in perceiving, understanding, and Analyzing reproductive and embryological developmental processes.					
Semester	v		Credits		4		
CourseDetails	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours	
		3	0	1	0	75	
Pre- requisites, If any		TAY				1	
	/A						

CO No.	Expected Course Outcome ONOURS)	Learning Domains*	PO No
1	Students will be able to understand the reproductive and developmental events	U/A	2,3,10
2	explain how developmental processes initiates and proceeds	E	2,3,10
3	To achieve a basic understanding of the experimental methods and designs that can be used for future studies and research	U	2,3,10
4	Discuss basic embryonic development	U	2,3,10
5	Explore the Molecular and Genetic Basis of Development:	Е	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs. 45	CO No.
	1.1	Introduction: Definition, Scope of developmental biology, sub-divisions (descriptive, Comparative, experimental and chemical), historical perspectives, basic concepts and theories.	3	1
1	1.2	Reproductive Physiology: Gonads- anatomy of testis and ovary, spermatogenesis, oogenesis, gonadal hormones and their functions. Hormonal control of human reproduction - Female reproductive cycles (Estrous cycle, Menstrual cycle). Structure of mammalian sperm and egg, Pregnancy, parturition and lactation. Egg types: Classification of eggs based on the amount, distribution and position of yolk. Mosaic and regulative, cleidoic and noncleidoic eggs. Polarity and symmetry of egg.	12	2
	2.1	Fertilization: Mechanism of fertilization- (Encounter of spermatozoa and Ova, Approach of the Spermatozoon to the Egg, Acrosome Reaction and Contact of Sperm and Ovum, Activation of Ovum, Migration of Pronuclei and Amphimixis,), Significance of fertilization, Polyspermy, Parthenogenesis- Different types and significance	5	3,2
2	2.2	Cleavage: Types, planes and patterns of cleavage, Cell lineage of Planaria. Influence of yolk on cleavage. Blastulation: Morula, blastula formation, types of blastula with examples Fate maps: Concept of fate maps, construction of fate maps (artificial and natural), structure of a typical chordate fate map. Significance of fate map. Gastrulation: Major events in gastrulation. Morphogenetic cell movements. Influence of yolk on gastrulation. Exogastrulation. Concept of germ layers and derivatives.	10	3

	3.1	Cell differentiation and gene action: Potency of embryonic cells (Totipotency, Pleuripotency, Unipotency of embryonic cells). Determination and differentiation in embryonic development, Gene action during development with reference to Drosophila (maternal effect genes), Zygotic genes.	5	5
3	3.2	Organogenesis —vulva formation in Caenorhabditis elegans, eye lens induction,(BRIEF ACCOUNT) limb development and regeneration in vertebrates Experimental embryology: Spemann's constriction experiments, Organizers and embryonic Induction. Embryo transfer technology, cloning, stem cell research. Ethical issues.	10	4,5
	3.3	Prenatal diagnosis: Amniocentesis, Chorionic villi sampling, Ultra sound scanning, Foetoscopy, Maternal serum alpha-fetoprotein, Maternal serum beta-HCG.	5	3
	3.4	Embryology of Frog: Gametes, fertilization, cleavage, blastulation, , gastrulation, neurulation, notogenesis. Differentiation of Mesoderm and Endoderm, Development of eye. Metamorphosis of frog, Hormonal and environmental Control.	10	4
4		PRACTICALS 1. Study of permanent slides of Frog embryology: T.S. Blastula, T.S. Gastrula. 2. Embryo transfer, cloning, Amniocentesis 3. Candling method. 4. Vital staining- demonstration 5. Calculate the gonado-somatic index of given fish 6. Male and female reproductive organs in cockroach	30	
5		Teachers specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Classroom lectures Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks
Types	Quiz/ Test Papers/ seminars /Peer Review
	Practical Total 15 marks
	Lab performance/Lab report/ Viva Voice
	B. End Semester Examination
	Theory Total 50 marks, Duration 1.5 hrs
	Short Essays 5 out of 8x4=20 marks
	Short questions-10 out of 12x2=20 marks
	Fill in the blanks /MCQ-1x10=10 marks
	Practicals Total 35 marks Duration- 2 hrs Record 10 marks,
	Examination 25 marks: spotter identification-5marks, viva -5 marks, Experiments/Dissection-15 marks.

- 1. Agrawal, V., & Sharma, R. (2007). Developmental biology. S. Chand Publishing.
- 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). Garland Science. U-UGP (HONOURS)
- 3. Balinsky, B. I., & Fabian, B. C. (2012). An introduction to embryology (5th ed.). CBS Publishers & Distributors.
- 4. Bhatnagar, S. P., & Moitra, A. (1996). Developmental biology. Oxford University Press.
- 5. Datta, S. C. (2008). Developmental biology. New Age International Publishers.
- 6. Gilbert, S. F. (2010). Developmental biology (9th ed.). Sinauer Associates.
- 7. Gilbert, S. F., & Barresi, M. J. F. (2016). Developmental biology (11th ed.). Sinauer Associates.
- 8. Gupta, P. K. (2007). Elements of developmental biology. Rastogi Publications.
- 9. Hall, B. K. (1999). The neural crest in development and evolution. Springer.

Programme	BSc (Honours) Biological Techniques and Specimen Preparation	
Course Name	MOLECULAR BIOLOGY	
Type of Course	DSC A	
Course Code	MG5DSCBTS301	
Course Level	300 GANDA	
Course Summary	This course provides students with a comprehensive understanding of the pand processes that govern the structure and function of biological molecular nolecular level. They will also learn about the latest advancements in rebiology research and how these findings can be applied in various field medicine, agriculture, and biotechnology. By the end of the course, student have gained a strong foundation in molecular biology that will prepare further studies or careers in the field.	les at the nolecular s such as lents will
Semester	V Credits 4	Total
Course Details	Learning Approach Lecture Tutorial Practical Others 3 0 1 0	Hours 75
Pre- requisites, if any	NO	

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	To understand the basic principles of molecular biology and its significance in the field of genetics and biotechnology.	U, K I	2,3,10
2	To acquire knowledge on various molecular mechanism involved in the regulation of gene expression in prokaryotes and eukaryotes.	K, A, S	2,3,10
3	To develop critical thinking skills to analyze and interpret experimental data in molecular biology research.	A, An, S	2,3,10
4	To acquire knowledge of current trends and advancements in molecular biology research	K, U	2,3,10
5	To apply knowledge of molecular biology to real-world problems and challenges in various fields, such as medicine, agriculture, and biotechnology	A,An, E	2,3,9,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs 45	CO No.
		Introduction to Molecular Biology-Genetic material	10	
1	1.1	Miescher to Watson and Crick- historic perspective, Griffith's and Avery's transformation experiments, Hershey-Chase, bacteriophage experiment, Structure and types of DNA & RNA. Modern concept of gene (Cistron, muton, recon, viral genes), Split genes (introns and exons), Junk genes, Pseudogenes, Overlapping genes, Transposons.	2	1
	1.2	DNA Replication- Models of DNA Replication, Conservative, Semiconservative and discontinuous, Steps in DNA replication (prokaryotes and Eukaryotes), Enzymatic factors involved, Modes of replication- theta, rolling circle, d-loop replication,	4	1,2
	1.3	DNA Repair mechanisms- Photolyase, Excision Repair- BER, NER. Mismatch repair, SOS repair, Recombination repair systems	4	1,2
		Process of transcription	8	
2	2.1	Types of RNA (mRNA, tRNA, rRNA)	2	1
	2.2	Process of transcription (prokaryotes and eukaryotes) promoters, Enhancers, RNA polymerases,	3	1,2
	2.3	Post-transcriptional modifications- Polyadenylation, capping, splicing	3	1,2
		Process of Translation and gene regulation and Nucleic acid -based technologies	27	
3	3.1	Central Dogma of molecular biology and central dogma reverse, one gene- one enzyme hypothesis, One gene-one polypeptide hypothesis Characteristics of genetic code, Contributions of Har Gobind Khorana, Eukaryotic and prokaryotic ribosomes, tRNAs, aminoacyl t-RNA synthetases,	4	1
	3.2	Steps involved in translation (prokaryotes and eukaryotes), Post translational modification	5	4
	3.3	Gene regulations: Prokaryotic(inducible & repressible systems) Operon concept -Lac operon	6	4

		and Tryptophan operon, Brief account of Eukaryotic gene regulation.		
	3.4	RNA interference, Antisense RNA, SiRNA, MicroRNA,	4	3,4,5
	3.5	Riboswitches & their applications,	2	3,4,5
	3.6	Nucleic acid as therapeutic agent,	3	3,4,5
	3.7	Human genome project and its implications	3	3,4,5
4		PRACTICAL	30	
	4.1	Introduction to Laboratory Techniques	4	
		Safety guidelines and laboratory protocols and Aseptic techniques and proper handling of materials, Preparation of solutions for Molecular Biology experiments		
	4.2	Extraction and Separation Experiments	16	4
		Isolation of chromosomal DNA from bacterial cells, Isolation of RNA, Determination of Purity of DNA using UV-Visible spectrophotometer (A260/A280measurement), Separation of DNA and RNA by agarose gel electrophoresis, Extraction of protein from tissues, Separation of protein by SDS-PAGE		
	4.3	Cloning and Plasmid Manipulation	10	4
		Isolation of Plasmid, Restriction enzyme digestion, Ligation reactions, Transformation of bacterial cells with recombinant plasmids Colony selection and screening		
5		Teacher specific module Spllabus		

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Lecture, group interaction, seminar, presentations, Experiential learning,			
Approach	Teaching aids like photographs, models, videos related to the topic can be used			
	MODE OF ASSESSMENT			
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars/Viva			
	Practical Total 15 marks			
	Lab performance/ record			
	B. End Semester Examination			
	Theory Total 50 marks, Duration 1.5 hrs			
	Short Essays 5 out of 7x4=20 marks			
	Short questions-10 out of 12x2=20 marks			
	Fill in the blanks -1x10=10 marks			
	Practicals Total 35 marks Duration- 2 hrs Record			
	10 marks,			
	Examination 25 marks			
	Performance of experiment 20 marks Viva-5 marks			

- 1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). New York, NY: Garland Science.
- 2. Allison, A. C. (2015). Fundamental Molecular Biology. Wiley.
- 3. Calladine, C. R., Drew, H. R., Luisi, B. F., & Travers, A. (2004). Understanding DNA. Elsevier.
- 4. Cox, M. M., Nelson, D. L., & Lehninger, A. L. (2007). Molecular Biology: Principles and Practice. Freeman.
- 5. Freidfelder, D. (2006). Molecular Biology. Narosa.
- 6. Harwood, A. J. (Ed.). (1996). Methods in Molecular Biology, Vol. 58: Basic DNA and RNA protocols. Humana Press.
- 7. Hartwell, L. H., Hood, L., Goldberg, M. L., Reynolds, A. E., & Silver, L. M. (2011). Genetics: From Genes to Genome. McGraw-Hill.
- 8. Lewin, B. (2004). Genes X. John Wiley.
- 9. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology. Scientific American Books.
- 10. Micklos, D. A., Freyer, G. A., & Crotty, D. A. (2006). DNA Science. Cold Spring Harbor.

- 11. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual.
- 12. Tropp, B. E. (2011). Molecular Biology: Genes to Proteins. Jones and Bartlett.
- 13. Walker, J. M., & Gringold, E. B. (1994). Molecular Biology and Biotechnology. Panima.
- 14. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., & Losick, R. (2013). Molecular Biology of the Gene. Benjamin/Cummings.
- 15. Weaver, R. F. (2011). Molecular biology (5th ed.). New York, NY: McGraw-Hill.

MGU-UGP (HONOURS)
Syllabus

	33					
Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	GENETICS					
Type of Course	DSC A					
Course Code	MG5DSCBTS302					
Course Level	300	AND				
Course	Introduce students to the	concepts o	f Genetics a	and to devel	op deep unde	erstanding
Summary	on genes and genetic varia	_			•	S
Semester	v		Credits	東	4	
				(A)		Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre-	None				•	•
requisites, if			1-4.			
any				~1111/		

CO No.	Expected Course Outcome	Learning Domains *	PO No
	Develop a deep understanding of the fundamental concepts and theories of Genetics	K,U	2,3,10
	To develop critical thinking, skill and research aptitudes in Genetics	K,U	2,3,10
3	To emphasize the central role of genes and their inheritance in the life of all organisms	U, An, E	
	Analyze the role of genetics in shaping population structure and dynamics.	An, E	

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description		CO No.
	1.1	Mendelian Genetics:	16	
		Mendel's experiment - Monohybrid Cross, Dihybrid Cross, Mendel's Laws of heredity, Test Cross, Back Cross and Reciprocal Cross. Chromosome Theory of Inheritance	4	1
	1.2	Interaction of genes:		
1		Allelic interactions: Incomplete Dominance and Co-Dominance with examples Lethal gene: Dominant and recessive lethal gene with examples Non-Allelic interaction: Complementary, Supplementary gene interaction with examples Epistasis – dominant, and recessive with examples, Polygenes with an example Pleiotropism, Multiple alleles with examples	6	1
	1.3	Linkage and Recombination:		
		Linkage and recombination of genes based on Morgan's work in Drosophila, Linked genes, Linkage groups, chromosome theory of linkage, types of linkage, Recombination, cross over value, Chromosome mapping, Two factor cross and three factor cross in Drosophila.	6	1
		Mechanisms of sex determination:	9	
2	2.1 XX-XY mechanism of sex determination,, Species with		5	3
	2.2	Characteristics of sex linked inheritance, X linked traits and Y linked traits in humans, Sex limited gene expression, Sex influenced dominance.	4	3
3		Extra chromosomal Inheritance and Mutation	9	
	3.1	Criteria for extra nuclear inheritance, cytoplasmic organelles containing DNA, Cytoplasmic male sterility		
		in plants	3	1

	3.2	Types of mutation -Somatic and germinal, Chromosome structural changes-Deletion, Duplication, Inversion and Translocation, Chromosome Numerical changes, Molecular basis of gene mutation, Induced mutations and physical mutagens, significance of mutations	6	1,2
		Chromosomal disorders and Population Genetics and experiments	26	
	4.1	Aneuploidy and Non-disjunction, Autosomal abnormalities		
		-Down's syndrome, Cry du chat syndrome, Sex chromosomal abnormalities-Klinefelter's syndrome, Turner's syndrome, Autosomal gene disorder-Sickle cell anaemia, Inborn errors of metabolism- Phenylketonuria, Alkaptonuria, Albinism, Multifactorial disorders-Cleft lip and cleft palate	5	3
4	4.2	Genetic variation, Allele frequencies, Hardy-Weinberg method, Inbreeding, Out breeding, Changes in allele frequencies, Genetic drift.	6	4
	4.3	Experiential learning		
		Experiments on monohybrid, dihybrid cross, test cross, and reciprocal cross, Experiments on epistatic interactions Determination of linkage and cross over analysis (two factor cross) Hardy Weinberg Law for calculation of gene frequency Sexing in Drosophila Pedigree Analysis Karyotype analysis	15	2
5		Teacher specific module MGU-UGP (HONOURS)		

Teaching & Learning Approach	Classroom Procedure (Mode of transaction) CT Enabled Learning, Tutorial, Lecturing, Seminars		
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar/ Viva		

B. End Semester examination
Theory Total 70 marks, Duration 2 hrs
Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

- 1. Gardner, E.J., Simmons, M.J., & Snustad, D.P. (2009). Genetics: Principles and Analysis. Wiley.
- 2. Griffiths, A. J., Miller, J. H., Suzuki, D. T., Lewontin, R. C., & Gelbart, W. M. (2000). An Introduction to Genetic Analysis (7th ed.). New York, NY: W. H. Freeman.
- 3. Lewin, B. (2017). Genes XII. Jones and Bartlett Publishers.
- 4. Pierce, B. A. (2013). Genetics: A conceptual approach (5th ed.). New York, NY: W. H. Freeman.
- 5. Russell, P. J. (2011). iGenetics: A Mendelian approach. San Francisco, CA: Pearson Education.
- 6. Singh, B.D. (2019). Fundamentals of Genetics. Kalyani Publishers.
- 7. Snustad, D. P., & Simmons, M. J. (2012). Principles of genetics. Hoboken, NJ: John Wiley & Sons.

MGU-UGP (HONOURS)
Syllabus

Programme	BSc (Honours) Biologic	cal Techniques & Specimen Prep	aration			
Course Name	IMMUNOLOGY	`				
Type of Course	DSE					
Course Code	MG5DSEBTS300					
Course Level	300	AND				
Course Summary	The course focuses on how the immune system functions to protect the body from infection and disease. It also highlights how the system is naturally or artificially perturbed in clinical conditions, such as immunodeficiency, autoimmunity and hypersensitivity conditions as well as latest advances in immunotherapy and vaccine development.					
Semester	V	Credits	4	- Total		
Course Details	Learning Approach	Lecture Tutorial Practical 4 0 0	Others 0	Hours 60		
Pre-requisites, if any		TAYAW	1	ı		

CO No.	Expected Course Outcome NOURS)	Learning Domains *	PO No
1	Understand basic functioning of immune system	U	
2	Instill knowledge about organs and cells of immune system	U	
3	Provide knowledge on essential features of antigens and antibodies	K	
4	Apply knowledge in disease diagnosis through serological tests	A	
5	Acquire a broad understanding of immune system malfunctioning.	U	
6	Create basic knowledge about new approaches to vaccine production and cancer immunotherapies	U	

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description		CO No.
	1	Immune system	11	
	1.1	Introduction, historical background and scope of Immunology	2	1
1	1.2	Primary lymphoid organs	2	1,2
	1.3	Secondary lymphoid organs	2	1,2
	1.4	Cells of immune system	3	1,2
	1.5	B and T cell maturation	2	1,2
	2.	Infection and Immunity	14	
	2.1	Types and source of infection	2	1
	2.2	Immunity: Innate vs Adaptive	2	1
2	2.3	Innate immunity: Innate immune mechanisms	3	1
	2.4	Acquired immunity: Active vs passive immunity	2	1
	2.5	Immune responses : Humoral and cell mediated immune responses	2	1
	2.6 B cell activation P (FONOURS)		2	1
	2.7 T cell activation		2	1
	3	Antigens & Antibody	18	
	3.1	Antigens -types	2	3
3	3.2	Essential features of antigenicity, B cell and Tcell epitopes	2	3
3	3.3	MHC, Antigen processing and presentation	2	1
	3.4	Antibody- Basic structure and classes	3	3
	3.5	Generation of Antibody diversity	3	3
	3.5	Monoclonal Antibodies: Hybridoma technology	2	3
	3.6	Antigen Antibody reactions-Serological tests	4	4

	4	Clinical Immunology	17	
	4.1 Hypersensitivity – Immediate and delayed reactions, Clinical types of hypersensitivity- Combs classification		3	5
<u>r</u>	1			1
	4.2	Auto immunity, Mechanisms of autoimmunization, Types of autoimmune disorders	3	5
4	4.3	Immunodeficiency diseases Primary & Secondary immunodeficiency disorders	3	5
	4.4	Tumor immunology, Tumor antigens ,Immune response in malignancy, Cancer Immunotherapies	3	5,6
	4.5	Immune hematology	2	5
	4.6	Vaccines: Types, new approaches in vaccine development	3	6
5		Teacher Specific Module		

Teaching & Learning Approach	Classroom Procedure (Mode of transaction) Classroom lectures Power point presentations Video presentations Article and general reviews Seminars & group discussions Assignments
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar/ Assignment/Viva/Take home tests B. End Semester examination Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

- 1. Ananthanarayanan, R & Panicker, C(2007). Textbook of Microbiology. Orient Longman.
- 2. Chappel,H & Haeney, M. Clinical Immunology. Wiley-Blackwell.
- 3. Flower, D. (2007). Immunoinformatics predicting Immunogenicity in Silico. Humana Press.

- 4. Janeway, C. & Travers, P. (2001) Immunobiology. Garland Science.
- 5. Kimball ,J.(2008). Introduction to immunology. Macmillan.
- 6. Kindt, T.& Kuby,J (2016).Immunology. W.H,Freeman.

MGU-UGP (HONOURS)
Syllabus

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	INTRODUCTION OF FORENSIC BIOLOGY					
Type of Course	DSE					
Course Code	MG5DSEBTS301					
Course Level	300 GANDA					
Course Summary	The program aims to provide students with a comprehensive understanding of the forensic science discipline, enabling them to apply scientific principles and techniques to solve crimes and contribute to the justice system.					
Semester	VI -		Credits	EES	4	Total
Course	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
Details		4	0	0	0	60
Pre- requisites, if any	€ To an		TO T	All/C		

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Solid understanding of forensic science principles	K, U	2,3,10
2	Proficiency in forensic laboratory techniques	U, A, S	2,3,10
3	Expertise in analyzing and interpreting evidence	An, E	2,3,10
4	Knowledge of legal and ethical considerations	U, K, A	2,3,7,10
5	Research and analytical skills	S, U, An	2,3,9,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 60	CO No.
		Forensic Biology		
1	1.1	Overview of the field, its history, and its importance in criminal investigations.	3	1
	1.2	Forensic biology-Analysis of biological evidence such as DNA, blood, and other bodily fluids	4	1,2
	1.3	Biological techniques- DNA profiling, serology, and the interpretation of biological evidence in criminal investigations	5	2,3,5
2		Forensic Chemistry		
	2.1	Forensic Chemistry- analysis and identification of chemical substances found at crime scenes	3	2,3
	2.2	Analytical techniques, including spectroscopy, chromatography, and mass spectrometry, and how they are used to identify drugs, explosives, and other chemical compounds.	6	2,3,5
		Forensic Toxicology		
3	3.1	Analysis of drugs and toxins in biological samples and their impact on criminal investigations.	3	2,3
	3.2	techniques for drug identification and interpretation of toxicological findings	3	2,3,5
	3.3	The effects of drugs on the human body.	3	1,3
		Forensic Anthropology		
	3.4	Study of human skeletal remains and their significance in criminal investigations	3	1,2
	3.5	Techniques for estimating age, sex, and stature from skeletal remains	3	2,3,5
4		Legal and Ethical Issues in Forensic Science:		
	4.1	the legal and ethical considerations that are relevant to forensic science practice	4	1,4
	4.2	The admissibility of evidence in court, expert witness testimony, and the ethical responsibilities of forensic scientists.	5	4

5	Teacher Specific Module	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars
	B. Semester End examination Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks

- 1. Saferstein, R. (2018). Forensic Science: From the Crime Scene to the Crime Lab (4th ed.). Pearson.
- 2. Fisher, B. A. J., & Fisher, D. R. (2018). Techniques of Crime Scene Investigation (9th ed.). CRC Press.
- **3.** Butler, J. M. (2019). Advanced Topics in Forensic DNA Typing: Methodology. Academic Press.
- 4. Levine, B. (2019). Principles of Forensic Toxicology (5th ed.). American Association for Clinical Chemistry.
- 5. Byers, S. N. (2018). Introduction to Forensic Anthropology (5th ed.). Routledge.
- 6. Turvey, B. E. (2017). Forensic Psychology (2nd ed.). Academic Press.
- 7. Houck, M. M., & Siegel, J. A. (Eds.). (2014). Fundamentals of Forensic Science (3rd ed.). Academic Press.
- 8. Saferstein, R. (2018). Criminalistics: An Introduction to Forensic Science (12th ed.). Pearson.
- 9. Lee, H. C., & Gaensslen, R. E. (2013). Advances in Fingerprint Technology (3rd ed.). CRC Press.
- 10. James, S. H., & Nordby, J. J. (2018). Forensic Science: An Introduction to Scientific

- and Investigative Techniques (5th ed.). CRC Press.
- 11. Stimson, G. W. (2017). Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers (2nd ed.). CRC Press.
- 12. Ramsland, K. A. (2019). Forensic Investigation: Methods from Experts (2nd ed.). CRC Press.
- 13. Bell, S., & Fisher, B. A. J. (2017). Criminalistics: An introduction to forensic science.

MGU-UGP (HONOURS)
Syllabus

CRC Press.

- 14. Black, M. (2019). Forensic science: Modern methods of solving crimes. Amber Books.
- 15. Siegel, J. A., Saukko, P. J., & Knupfer, G. C. (2015). Encyclopedia of forensic sciences (2nd ed.). Academic Press.

SUGGESTED READINGS

- 1. Brown, M. K., & Williams, L. G. (2019). Advancements in Fingerprint Analysis Techniques: A Comparative Study. Forensic Science Review, 56(2), 87-101.
- 2. Baker, L. C., & Wilson, E. P. (2018). Forensic Odontology: Bite Mark Analysis and Its Reliability. Journal of Forensic Dentistry, 44(3), 143-157.
- 3. Butler, J.M. (2006). "Advances in Forensic DNA Analysis: Implications for Population Genetics"
- 4. Drummer, O.H. (2014). "Forensic Toxicology: Current Trends and Future Perspectives"
- 5. Garcia, R. S., & Martinez, C. D. (2020). The Use of Microscopic Hair Analysis in Forensic Investigations. Journal of Criminalistics, 38(4), 201-215.
- 6. Gonzalez, M. H., & Hernandez, J. R. (2019). Forensic Entomology: Current Trends and Future Directions. Journal of Forensic Entomology, 35(2), 98-112.
- 7. Kocsis, R.N. (2006). "Psychological Profiling in Forensic Investigations: An Overview"
- 8. Lewis, A. M., & Campbell, R. J. (2017). The Role of Forensic Psychology in Criminal Profiling. Journal of Forensic Psychology, 39(1), 12-27.
- 9. Patel, S. R., & Thomas, R. M. (2019). Forensic Anthropology: Techniques for Estimating Age and Sex from Skeletal Remains. Journal of Forensic Anthropology, 31(2), 75-89.
- 10. Roberts, E. L., & Collins, T. R. (2020). Forensic Toxicology: Advances in Drug Screening and Interpretation. Journal of Analytical Toxicology, 47(4), 230-245.
- 11. Smith, J. D., & Johnson, A. B. (2018). The Role of DNA Analysis in Solving Cold Cases. Journal of Forensic Science, 42(3), 123-136.
- 12. Thompson, P. H., & Davis, K. L. (2017). Digital Forensics: Challenges and Opportunities in the Cybercrime Era. Journal of Forensic Investigations, 25(1), 45-58.
- 13. Wilson, G. A., & Anderson, L. M. (2018). Ballistics Analysis: A Comprehensive Review of Methods and Tools. Forensic Science International, 145(3), 167-182.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biologic	cal Techniques and Specimen	Preparatio	n
Course Name	EVOLUTION AND ET	HOLOGY		
Type of Course	DSE			
Course Code	MG5DSEBTS302			
Course Level	300	ANDLE		
Course Summary	develop deep understan	the basic concepts of Evolution on molecular mechanisms ing population structure and descriptions.	, driving ger	netic variation
Semester	V	Credits	4	Total
Course	T	Lecture Tutorial Pract	ical Oth	ers Hours
Details	Learning Approach	4 0 0	0	60
Pre- requisites, if any	NO.	TTAYAM		,

COURSE OUTCOMES (CO) विद्या अभूतसञ्ज

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Develop a deep understanding of the fundamental concepts	K,U	2,3,10
	and theories of evolution and Ethology		
2	Explore the genetic basis of evolutionary processes,	K,U	2,3,10
	including natural selection, genetic drift, gene flow, and mutation.		
3	Understand the principles and history of ethology.	U	2,3,10
4	Learn about various behaviors such as foraging, mating, communication, and social interactions.	An	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 60	CO No.
	1.1	Concepts in Evolution: Theories of evolution: theory of spontaneous generation (Abiogenesis or Autogenesis), Special creation, Biogenesis, Endosymbiosis, Evolution of Prokaryotes, origin of eukaryotic cells, origin of photosynthesis and aerobic metabolism.	5	1
1	1.2	Chemical evolution - Haldane and Oparin theory, Miller-Urey experiment; Direct evidences of evolution - Recapitulation Theory of Haeckel, Lamarckism and Neo-Lamarckism, Darwinism and Neo-Darwinism, Theory of De Vries, Modern synthetic theory, Punctuated equilibrium, Molecular evolution in Darwinian finches	10	1
	1.3	Molecular Evolution - Neutral theory of molecular evolution; Phylogenetic relationships- Homology; Homologous sequences of proteins and DNA - orthologous and paralogous; parsimony analysis; nucleotide and protein sequence analysis	5	1,3
	2.1	Population genetics: Gene pool, gene frequency, Hardy-Weinberg Law, rate of change in gene frequency through natural selection, migration and random genetic drift, Founder effect and Bottle check phenomenon	5	2,3, 4
2	2.2	Speciation: Types of speciation, phyletic speciation, True speciation, Instantaneous and gradual speciation, allopatric and sympatric speciation Isolation: Types of isolating mechanisms-Geographic isolation and Reproductive isolation. Role of isolating mechanisms in evolution, Co-evolution Continental drift theory, Types and means of animal distribution, Factors affecting animal distribution; insular fauna – oceanic islands and continental islands. Geological time scale, Mass extinction	10	3,4
3	3.1	Ethology: Concept and classification: Patterns and Mechanisms in Animal Behaviour		

History (brief), scope of ethology. (a) Innate behaviour: Orientation-taxes/kinesis, simple reflexes, instincts, motivation. (b) Learned behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning. 3.2 Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also). 4 Teacher Specific Module			Introduction and Patterns of behavior	5	3
behaviour: Orientation-taxes/kinesis, simple reflexes, instincts, motivation. (b) Learned behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning. Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).				3	3
reflexes, instincts, motivation. (b) Learned behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning. Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. 3.3 Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning. 3.2 Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. 3.3 Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).			, <u> </u>		
and error learning; latent learning, imprinting, insight learning, memory and learning. Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
insight learning, memory and learning. Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
3.2 Neural mechanism in behavior Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. 3.3 Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).		3.2			
behavior; mammalian limbic system and control of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
of behavior (brief account). Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
Communication and Signaling Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).				10	3,4
Types of animal communication: visual, auditory, chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
chemical, tactile. Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
Evolution and function of signaling. Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
Honest vs. deceptive signaling. Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
3.3 Biological rhythm and Sociobiology: Biological clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
clocks/rhythms Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).		3 3			
orientation, navigation and homing; diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).		5.5			
diapause, hibernation and aestivation (brief account) 3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).			Photoperiodism, circadian rhythm; migration,	5	3
3.4 Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).					
Sociobiology Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).			diapause, hibernation and aestivation (brief		
Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).			account)		
Social groups in termites and elephants; Chemical communication: classification And significance of pheromones (mention human pheromones also).		3.1	Sociobiology		
And significance of pheromones (mention human pheromones also).		J.T	Social groups in termites and elephants; Chemical		
pheromones also).			communication: classification		
MGI-IGP (HANAIRS)			And significance of pheromones (mention human	5	3
4 Teacher Specific Module			pheromones also).		
	4		Teacher Specific Module		
	-				

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Classroom lectures, Video presentations, Seminars Group discussions, Assignments
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars
	B. End Semester examination Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Multiple choice questions-1x10=10 Marks

- 1. Agarwal, V. K. (2009). Animal behaviour. S. Chand and Company Pvt. Ltd.
- 2. Arthur, W. (2011). Evolution: A developmental approach. Wiley-Blackwell.
- 3. Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). Evolution. Cold Spring Harbor Laboratory Press.
- 4. Bonner, J. T. (1980). The evolution of culture in animals. Princeton University Press.
- 5. Camilo, J. C., & Francisco, J. (2007). Human evolution: Trails from the past. Oxford University Press.

 MGU-UGP (HONOURS)
- 6. Campbell, B. G. (2009). Human evolution. Transaction Publishers.
- 7. Chattopadhyay, S. (n.d.). Life, origin, evolution and adaptation. Books and Allied (P) Ltd.
- 8. Dan, G., & Li, W. H. (2000). Fundamentals of molecular evolution (2nd ed.). Sinauer Associates Inc.
- 9. Dawkins, M. S. (1995). Unravelling animal behaviour. Longman.
- 10. Dunbar, R. (1988). Primate social systems. Croom Helm.
- 11. Gould, S. J. (2002). The structure of evolutionary theory. Harvard University Press.
- 12. Gundevia, J. S., & Singh, H. G. (1996). A text book of animal behaviour. S. Chand and Company Pvt. Ltd.
- 13. Hall, B. K., & Hallgrimsson, B. (2008). Evolution (4th ed.). Jones and Bartlett Publishers.
- 14. Hartel, D., & Jones, E. (2009). Lewin's Genes X (10th ed.). Jones and Bartlett.

- 15. Jha, A. P. (2000). Genes and evolution. Macmillan Publishers India.
- 16. Kimura, M. (n.d.). The neutral theory of molecular evolution. Cambridge University Press.
- 17. Lindell, B. (2016). An introduction to molecular evolution and phylogenetics (3rd ed.).
- 18. McFarland, D. (1999). Animal behaviour. Pearson Education Ltd.
- 19. Strickberger, M. W. (2000). Evolution. Jones and Bartlett.

MGU-UGP (HONOURS)
Syllabus

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honours) Biologic	al Techniq	ues and Sp	pecimen Pro	eparation	
Course Name	NEUROBIOCHEMISTR	Y				
Type of Course	DSE					
Course Code	MG5DSEBTS303					
Course Level	300	AND				
CourseSum mary	The course introduces fur involved in the control are in communication betwee behavior, the impact of s being.	nd coordinaten neuron	ation of the s,learning	brain. The and memor	role of neurotry, regulating	ransmitters mood and
Semester	VI		Credits	\$\frac{1}{2}	4	
Course Details	LearningApproach	Lecture 4	Tutorial 0	Practical 0	Others 0	Total Hours 60
Pre- requisites, ifany	None	3102(1)	o I Legy			

COURSEOUTCOMES(CO)//GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	To gain an understanding of the biochemical processes underlying neural function and communication.	U,K	2,3,10
2	To understand the role of various neurotransmitters and receptors in the nervous system.	U	2,3,10
3	To analyse the impact of neurotransmitter imbalances on neurological disorders and diseases.	U,A	2,3,10
4	To acquire knowledge in neurobiochemistry and understanding its effect on physiology and homeostasis	U	2,3,10
5	To identify and learn biochemical concepts related to neurobiology affecting life and its overall well being	A,S	2,3,9,10

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 60	CO No.
	1.1	The nervous system; functions of the nervous system, Central, Peripheral and Autonomic Nervous System. Cells of the nervous systemneurons, structure, classification and properties of neurons; Synapses- types and properties. Mechanism of conduction of nerve impulses.	5	1
1	1.2	Neurotransmitters- Role of neurotransmitters in the transmission of impulses, mechanism of action.	5	1
	1.3	Neurotransmitters Chemistry, Structure and Functions. ANS- Sympathetic and Parasympathetic neurotransmitters- Ach, Adrenaline, Noradrenaline. Neurotransmitters of CNS Serotonin, Histamine, Glutamine, Aspartate, GABA, Glycine, Nitric oxide, Substance P	5	1,2
	2.1	Emotions Neural centres of emotions; Hypothalamus and limbic system. Role of CNS in emotions	5	2,3
2	2.2	Stress and health. Phases and types of stress. Hormonal, anatomical and physiological indicators of stress	5	2,3
	2.3	Regulation of stress HPA axis Fight or Flight response Understanding the biochemistry and managing stress.	5	3
	3.1	Sleep and wakefulness Types of sleep and its significance. Brain areas involved in sleep. Factors affecting sleep. Sleep disorders, Circadian rhythm, EEG	5	3
3	3.2	The concept of learning and memory. Role of hippocampus and its role in consolidation of memory. Neurotransmitters involved in learning and memory. Neurodegenerative disorders- Parkinson's, Alzhemer's disorders, ALS, Senile dementia etc	5	3

3.3	Introduction to brain chemistry		
5.5	Brain barriers; blood brain barrier and its		
	significance CSF; composition and functions.		
	Brain chemistry, psychiatric drugs and mental	5	3
	illness		
4.1	An overview of the endocrine system.		
""	Hypothalamus and pituitary, thyroid, adrenal glands, endocrine control of growth, sex	5	4
	hormones and pancreatic hormones,		

		hormones and pancreatic hormones,		
		Feedback mechanism of hormone regulation		
		with examples		
		HPA axis and HPT axis		
4	4.2	Impact of sex hormones and role of		
	4.2	neurotransmitters in sexual behavior, fear,	5	
		thirst and hunger		5
	4.3	Psychoneuroimmunology		
	4.3	Connections between nervous system and		
		immune functions.		
		Influence of stress on immune function.	5	5
		Placebo effect		3
		Biofeedback, mind body technique and		
		meditation		
5		Teacher Specific Module		
		OTTAVAN'		
		TAIL		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations, chart making Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars
	B. End Semester examination Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks

1. Agra noff, B. W., Albers, W., Fisher, S. K., Siegel, G. J., & Uhler, M. D. (Eds.). (1999).

- Basic Neurochemistry- Molecular, cellular and medical aspects.
- 2. Guyton, A. C., & Hall, J. E. (2006). Textbook of Medical Physiology.
- 3. Hadley, M. E. (2000). Endocrinology.
- 4. Matthews, G. G. (2007). Neurobiology: Molecules, cells and systems.
- 5. Nicholls, J. G., Martin, A. R., Wallace, B. G., & Fuchs, P. A. (2012). From Neuron to Brain.
- 6. Widmaier, E. P., Raff, H., &Strang, K. T. (2012). Vander's Human Physiology- The mechanism of body function.
- 7. West, J. B. (2012). Physiological basis of Medical Practice.

MGU-UGP (HONOURS)

Syllabus

Suggested Readings

- 1. Delcomyn, F. (1998). Foundations of Neurobiology. 1st edition. W. H. Freeman and Company.
- 2. Ganong, William F. (Year). Review of Medical Physiology.
- 3. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., Mooney, R., Platt, M. L., & White, L. E. (2018). Neuroscience. 6th edition. Sinauer.
- 4. Zupanc, G. K. H. (2010). Behavioral Neurobiology: An Integrative Approach. 2nd edition. Oxford University Press

MGU-UGP (HONOURS)

Syllabus

Mahatma Gandhi University Kottayam

	<i>₽</i> ↓
Programme	BSc (Honours) Biological Techniques and Specimen Preparation
Course Name	ENTREPRENEURSHIP IN BIOCHEMISTRY
Type of Course	SEC
Course Code	MG5SECBTS300
Course Level	300
Course Summary	The foundational concepts of biochemical entrepreneurship, exploring the transformative power of technological innovations.
Semester	Credits 3 Total
Course Details	Learning Approach Lecture Tutorial Practical Others 3 0 0 0 45
Pre- requisites, if any	Nil

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Acquire a comprehensive understanding of nutrition and herbal food supplements, emphasizing their benefits for daily nutrition and preventive care. Recognizing the global impact of dietary habits, participants will be equipped to apply this knowledge practically, selecting and utilizing herbal supplements for daily health benefits.	U	2, 3, 4, 6, 9, 10

2	Participants will gain a profound understanding of the nutraceutical business landscape, encompassing dietary supplements, functional foods, and phytochemicals. They will navigate the intricacies of product classifications, comprehend various nutraceutical ingredients, and discern unique selling points. Furthermore, participants will develop expertise in the regulatory aspects of nutraceuticals, including NPD activities, GMP requirements, and quality management systems. The module	U	1, 2, 3, 4
	will also empower participants with key marketing terminologies, focusing on FDA labelling, claims, expiration dates, and glutenfree labelling, enhancing their ability to make informed decisions in the nutraceutical industry.		
3	Participants will grasp the foundational concepts of biochemical entrepreneurship, exploring the transformative power of technological innovations. They will master the art of securing funds for biochemical ventures and navigate the complex regulatory landscape, ensuring ethical practices and safeguarding intellectual property. By the end, participants will be equipped with the knowledge and skills to initiate biochemically-driven entrepreneurial endeavors.	An,E,S,C	1, 2, 3, 4
4	Navigating Biochemical Ventures, participants will emerge equipped with the expertise to navigate the intricate path from laboratory discoveries to market realities. They will master the essentials of commercialization, encompassing the definition of commercialization in biochemistry and crucial stages in the process. Through in-depth market analysis, participants will develop a keen understanding of target audiences, market needs, and trends, fostering strategic product development. Furthermore, participants will gain valuable insights into scaling operations, expanding globally, and fostering social impact through biochemistry, establishing themselves as adept entrepreneurs in the biochemical landscape.	A.I,Ap	1, 5, 8
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), C t (I) and Appreciation (Ap)	reate (C), Ski	ll (S),

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
Foundations of holistic wellness:	1.1	 Health and Nutrition Nutrition, Classification, Benefits and Uses Herbal Food Supplements Preventive Care, Health care products as daily supplements. 	3	1
exploring nutrition, nutraceutical, and herbal	1.2	 Role of Nutraceuticals supplements Nutritional deficiency and disorders Preventive care and its role Fruits / Food supplements and their nutritional 	3	1

F				
health supplements		values		
	1.3	 Lifestyle disorders Life Style Diseases Imbalanced diet, Overeating Under nourished diet Indian and global scenario, Problems and outcome 	5	1
	1.4	 Herbal Supplements Preventive Health care through Rejuvenative Herbs and its formulation Supplements for daily use from Common Herbs in Indian Medicine 	4	1
2	2.1	 Nutraceutical business Dietary supplements, Functional foods, Phytochemicals, Multivitamins, Nutraceutical product classifications, Understanding various nutraceutical ingredients, classifications, unique selling points Nutraceutical and disease management 	4	2
Navigating the nutraceutical landscape: business, regulations, and marketing	2.2	Regulations and laws NPD and regulatory activities GMP requirements for nutraceutical plants Quality management system Registration and regulation of food supplements	5	2
essential	2.3	 Key terminologies of marketing Nutraceutical labelling –FDA labelling, Label claim Net quality of content statement Expiration date Gluten free labelling of food Food shelf life stability testing 	4	2

• Defining Biochemical Entrepreneurship • Scope in the Interdisciplinary Landscape • Historical Perspective: • Tracing the Roots of Biochemical Entrepreneurship • Key Milestones and Contributions • Importance in Modern Industry: • Role in Technological Advancements • Contributions to Biotechnology and Healthcare	5	3
Case Studies of Biochemical Entrepreneurship:	6	3,4

		 Patterns in Successful Ventures Trends Shaping the Biochemical 		
		Entrepreneurship Landscape		
		Emerging Trends:		
		 Current Landscape: 		
		 Overview of the Present Biochemical 		
		Entrepreneurship Scenario Market Dynamics and Industry Players		
		Future Projections:		
	3.3	Anticipated Developments in Biochemical	6	3,4
		Entrepreneurship Potential Areas of Growth and Innovation		,
		• Industry Insights:		
		 Perspectives from Experts and Industry 		
		Leaders • Predictions and Recommendations for		
		Aspiring Entrepreneurs		
4		Teacher Specific Module		

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	Lectures, group interactions, group seminar, power point presentations Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources, hands on training of Bioinformatics tools and softwares

Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 25 marks
	Test Papers/Assignments/Seminars
	B. End Semester examination
	Theory Total = 50 marks (Duration 1.5hrs) Short essays (5 out of 7) X 4= 20 marks Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks

- 1. Berg, Jeremy M., Tymoczko, John L., Stryer, Lubert. Biochemistry 6th Edition. B.i. Publications Pvt. Ltd. (2007) ISBN: 071676766X
- Nelson, David L., Cox, Michael M. Lehninger Principles of Biochemistry, Fourth Edition.
 W. H. Freeman (2004) ISBN: 0716743396
- 3. Rastogi. Biochemistry. Mcgraw Hill (2008) ISBN: 0070527954

MGU-UGP (HONOURS)

Syllabus

- 4. Voet, Donald, Voet, Judith G. Biochemistry. John Wiley & Sons Inc (2004) ISBN: 047119350X
- 5. West, E.S., Todd, W.R., Mason, H.S., van Bruggen, J.T. A Text Book of Biochemistry. Oxford and IBH Publishing Co. (1974)
- Zubay, Geoffrey L., Parson, William W., Vance, Dennis E. Principles Of Biochemistry.
 Mcgraw-hill Book Company–Koga (1995) ISBN: 0697142752

SUGGESTED READINGS

- 1. Banarjee, Pranab Kumar. (2008). Introduction to Biophysics. S. Chand & Company Ltd.
- 2. Das, Debajyoti. Biochemistry. Academic Publishers. Kolkata.
- 3. Mathews, Christopher K., van Holde, Kensal E., & Ahern, Kevin G. (2000). Biochemistry. Pearson Education.
- 4. West, E. S., Todd, W. R., & Van Bruggen, J. T. (1974). A Text Book of Biochemistry. Oxford and IBH Publishing Co.

MGU-UGP (HONOURS)

Syllabus

MGU-UGP (HONOURS)
Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological	Techniques and Spec	cimen Prepa	ration	
Course Name	FOOD AND INDUSTRIA	L MICROBIOLOGY			
Type of Course	DSC A				
Course Code	MG6DSCBTS300				
Course Level	300	MDH			
Course Summary	The course will enable students to apply the learning of microbiology concepts toward the exploitation of microbial population for industrial and human benefits. The role of microbes in food spoilage, preservation and various food borne diseases will be discussed. The strategies for development of microbial strains, process optimization, large scale production and product recovery will be covered for industrially relevant microbial products.				
Semester	VI	Credits		4	Total
Course	Learning Approach	Lecture Tutorial	Practical	Others	Hours
Details	107	3 0	1	0	75
Pre- requisites, if any	विद्याया व	असतसञ्जत			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Developing an understanding about the concept, importance and scope of Food microbiology and industrial microbiology.	U	2,3
2	Students learn techniques to isolate, maintain, and identify microorganisms from food samples.	U, A,S	2,3,9,10
3	Build awareness about microbial spoilage of food and gain acquaintance with food borne diseases and their significance.	U	2,3,9,10
4	Comprehend the functions of Microorganisms in food.	U,A	2,3,9,10
5	Discuss and apply methods for food preservation techniques- chemical preservation and irradiation.	U	2,3,9,10
6	Know about the techniques to isolate and screen the significant microorganisms capable to produce food products.	U,A	2,3,9,10
7	Understand the microbial roles in preparation of fermented foods.	U,A,I	2,3,9,10
8	Acquire knowledge about the benefits of fermented foods.	U,A,S	2,3,9,10

COURSE CONTENT

Content for Class room transaction (Units)

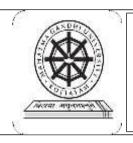
Module	Unit	Course description	Hrs 45	CO No.
		Overview of Food Microbiology	8	
	1.1	Basic aspects, history and scope of food microbiology.	2	1
1	1.2	Types of microorganisms associated with food - Bacteria, Molds	4	2,3
	1.3	Role and Significance of bacteria and molds in Foods.	2	2,3
		Microbial Food Spoilage and Preservation of Food	12	
	2.1	Definition and major causes of food spoilage. Spoilage of specific food groups: Spoilage of canned foods, cereals, fruits, bread, eggs, meat and fish.	2	3
	2.2	A brief account on common food-borne infections and toxicoses - Salmonellosis, Botulism, Cholera, Mycotoxins -Aflatoxin in stored food and grains	2	3
	2.3	Principles of food preservation	1	4
_	2.4	Preservation Methods: High and low temperatures drying, chemical preservation, irradiation.	1	
2	2.5	(i) Preservation by use of High temperature- Pasteurisation, Heating at 100°C, Canning.	1	4
	2.6	(ii) Preservation by use of low temperature - chilling or cold storage - Freezing or Frozen storage	1	4
	2.7	(iii) Preservation by Drying - Sun drying - Drying by Freeze drying - Smoking	1	4
	2.8	(iv) Preservation by food additives - Organic acids and their salts - Benzoates, Sorbates, Acetates, Nitrites and Nitrates.	1	5
	2.9	(v) Kinds of ionizing radiations used in food irradiation, uses of radiation processing in food industry, concept of cold sterilization	2	5
3		Overview of Industrial Microbiology	10	
	3.1	Historical account of microbes in industrial microbiology.	2	1
	3.2	Sources and characters of industrially important microbes; their isolation, purification and maintenance and storage.	3	5
	3.3	Screening of useful strains; primary screening and secondary screening.	2	5
	3.4	Strain improvement of industrially important microbes through random mutation and genetic engineering.	3	15
		Industrial production of food products through fermentation	15	6
	3.5	Introduction to microbial products and fermentation process.	2	6

		Definition of fermentation and fermenters.		
	3.6	Types of industrial fermentation processes: Batch, continuous, submerged, and solid state fermentation (SSF).	4	6
	3.7	Bread manufacturing, beer manufacturing.	2	6
	3.8	Fermented milk products- cheese production process, starter culture, types of cheese.	2	6,7,8
	3.9	Other fermented dairy products- butter milk, acidophilus milk, yoghurt, paneer.	2	6,7,8
	3.10	Microorganisms as food - Single Cell Protein (SCP) SCP production by algae and mycoprotein from fungi for use as food and feed. Industrially used SCP(Quoron, Pruteen); Advantage and disadvantages of SCP.	3	6,7,8
		PRACTICALS	30	
4		 Preparation of sterilized media Isolation of bacteria from food by Aerobic/Standard Plate Count using dilution plating technique Isolation of spoilage microorganisms from bread Isolation of spoilage microorganisms from spoiled vegetables/fruits Methylene blue reduction test for milk. Preservation of microbial cultures by making glycerol stocks Microbial fermentations for the production and estimation (qualitative and quantitative) of amylase. Food production by Microorganism: Fermented dairy products (Probiotic Curd, Yogurt) 		1,2,3,4, 5,6,7,8
5	5	Teacher Specific Module Spillabus		

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Lecture, group interaction, individual assignments, seminar, presentations		
Approach	A visit to any educational institute/industry to see an industrial fermenter,		
	and other downstream processing operations.		
	MODE OF ASSESSMENT		
	A. Continuous Comprehensive Assessment (CCA)		
	Theory Total=25 marks		
Assessment	Quiz/ Test Papers/ seminars		
Types	Practical Total 15 marks		
	Lab performance/ record/ Industry visit report		
	B. End Semester Examination		
	Theory Total 50 marks, Duration 1.5 hrs		
	Short Essays 5 out of 7x4=20 marks		
	Short questions-10 out of 12x2=20 marks		
	Fill in the blanks -1x10=10 marks		
	Practicals Total 35 marks Duration- 2 hrs		
	Record 10 marks		
	Examination 25 marks: Performance of Experiments 16 marks Viva-4 marks, research institute visit report- 5 marks		

- 1. Adams, M. R., & Moss, M. O. (2000). Food microbiology. Royal Society of Chemistry.
- 2. Berlanga, M. (2005). Food Microbiology: An Introduction. Thomas J. Montville, Karl R. Matthews (Eds). International Microbiology, 8(1), 74-75.
- 3. Casida, L. E. (1968). Industrial microbiology. Industrial microbiology.
- 4. Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.). (2020). Food microbiology: fundamentals and frontiers. John Wiley & Sons.
- 5. Frazier, W. C., & Westhoff, D. C. (1978). Food Microbiology; TATA McGraw-Hill Pub. Co. Ltd. New Delhi.
- 6. Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (Eds.). (2000). Microbiological safety and quality of food (Vol. 1). Springer Science & Business Media.
- 7. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 8. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2009). Industrial microbiology: an introduction. John Wiley & Sons.

SUGGESTED READINGS


- 1. Baltz, R. H., Demain, A. L., & Davies, J. E. (Eds.). (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press.
- 2. Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press.
- 3. Marwaha S.S., Arora J.K. (2003). Biotechnological strategies in Agro-processing. (Asiatech Publishers Inc., New Delhi, India).
- 4. Patel A.H. (2007). Industrial microbiology. (New Age International Publishers).
- 5. Singh B.D. (2008). Biotechnology: Expanding Horizons. (Kalyani Publishers, India).
- 6. Stanier R.Y., Ingraham J.L., Wheelis M.L. and Painter R.R. (2008). General Microbiology. (Macmilian Press London).

7. Pommerville J.C. (2011). Alcamo

MGU-UGP (HONOURS)

Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	HUMAN PHYSIOLOGY					
Type of Course	DSC A					
Course Code	MG6DSCBTS301					
Course Level	300	300				
Course Summary	This course is designed to provide an overview of human physiology. Course topics will include the various systems of the body, functions of each system, and interrelationships to maintain the internal environment					
Semester	VI	VI Credits 4				
Course Details	Learning Approach	Lecture 3	Tutorial	Practical 1	Others	Total Hours 75
Pre- requisites, if any	विद्या	विद्या अस्तसञ्ज्ते 📗				

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Understand Fundamental Concepts in Human Physiology:	U/A	2,3,10
	Students should be able to explain interrelationships among molecular, cellular, tissue, and organ functions in each system	Е	2,3,10
	Able to gain the approaches used to study various functional systems of the human body and physiologic adaptation	I	2,3,10
	understand the experimental methods and designs that can be used for further study and research.	U	2,3,10
	Students should be able to identify causes and effects of homeostatic imbalances	Е	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs. 45	CO No.
1	1.1	BLOOD &HAEMODYNAMICS: Formed elements of blood, function and life span; hematopoiesis: abnormalities, Hemostasis & Thrombosis, Blood flow, Blood pressure.	5	1
1	1.2	CARDIOVASCULAR PHYSIOLOGY: Anatomy and general function of heart. structure of cardiac tissue, cardiac cycle, conduction system, ECG,(normal and abnormal)myocardial infraction, myocardial necrosis and myocarditis	10	1,2
2	2.1	RESPIRATORY PHYSIOLOGY: , Anatomy of Respiratory System, Physical principles of gas flow and resistance; lung volumes, Transport of respiratory gases - transport of oxygen, oxyhaemoglobin curve, factors affecting oxyhaemoglobin curve, transport of carbon dioxide,(chloride shift). Respiratory disturbances (Hypoxia, Hypercapnia, Asphyxia). Oxygen therapy and artificial respiration	10	1,3
	2.2	DIGESTIVE PHYSIOLOGY: Anatomy and histology of digestive glands (liver, pancreas, salivary, gastric and intestinal). Nervous and hormonal control of digestion. Gut-brain interaction: Gut-liver-brain axis, neuronal & endocrine regulations, role of micro biomes, role of phytochemicals including phytoestrogen, phyto insulin & phytopolyphenoles Pathophysiology of GI tract: Secretary diarrhea, ulceration, irritable bowel syndrome& Crohn's diseases	10	2,3,5
	3.1	RENAL PHYSIOLOGY: Histology of Bowman's capsule and tubular part. Urine formation – glomerular filtration, tubular reabsorption, tubular secretion. Urine concentration – counter current mechanism. hormonal regulation of kidney function Renal disorders(kidney stone, acute and chronic renal failure, and dialysis	10	3,5
3	3.2	NERVOUS PHYSIOLOGY: Ultra structure of neuron. Nerve impulse production (resting membrane potential, action potential), transmission of impulse along the nerve fiber, interneuron	5	4.5

Neural disorders (brief account on Dyslexia, Parkinson's disease, Alzheimer's disease, Epilepsy	
3.3 SPORTS PHYSIOLOGY-: Structure of Skeletal Muscle, (Neuromuscular Junction, Muscular Contraction). Overview of the Sliding Filament Model, muscle metabolic system in exercise, Effect of athletic training on Muscle and Muscle performance	5
3.4 ENDOCRINOLOGY: Endocrine physiology: Hormones – classification and mechanism of hormone action. Major endocrine glands(Histology is not included) their hormones, functions and disorders (hypothalamus, pituitary gland, pineal gland, thyroid gland, parathyroid gland, islets of Langerhans, adrenal gland),. Homeostasis and feedback mechanism.	,5
PRACTICALS 30	
1. Determination of hemoglobin content of blood 2).Total RBC count using Haemocytometer 3)Total WBC count using Haemocytometer 4). Estimation of microhaematocrit 5). Effect of hypertonic, hypotonic and isotonic solutions on the diameter of RBC	4,5
9. Bleeding time and Clotting time 10. Instruments: Kymograph, Sphygmomanometer and Stethoscope (principle and use)	

Teaching	Classroom Procedure (Mode of transaction)
and	Classroom lectures
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
Approach	interactive Instruction:, Active co-operative learning, Seminar, Group
	Assignments Authentic learning, , Library work and Group discussion,

Presentation by individual student/ Group representative

	MODE OF ASSESSMENT	
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars Practical Total 15 marks Lab performance/Lab report/ Viva Voice	
	B. End Semester examination	
	Theory Total 50 marks, Duration 1.5 hrs	
	Short Essays 5 out of 8x4=20 marks	
	Short questions-10 out of 12x2=20 marks	
	Fill in the blanks /MCQ-1x10=10 marks	
	Practical total 35 marks: record-10, examination 25	

- 1. Arthur C. Guyton and John E. Hall; 2016; Text Book of Medical Physiology: Guyton, 13th edition; Elsevier
- 2. Barrington, E. J. W.; 1975; General and Comparative Endocrinology, Oxford, Clarendon Press.
- 3. Geetha N. 2014. Textbook of Medical Physiology: Paras Medical Publishers, 3rd edition
- 4. Jain, A K.; 2016; Textbook of Physiology., Avichal Publishing Company
- 5. Martin, C.R. 1985. Endocrine Physiology: Oxford University Press.
- 6. Melmed, Shlomo, Williams, Robert Hardin; 2011; Textbook of Endocrinology: Elsevier, 12thedition.
- 7. Ox, S.I.(2006) Human Physiology9th ed. McGraw Hill International Edition
- 8. Seeley, R.R., Stephens, T.D., and Tate, P(2006) Anatomy and Physiology7th ed.

McGraw Hill International Edition

- 9. Thibodeau, G.A., and Patton, K.T(2007)Anthon's Textbook of Anatomy and Physiology. 18th ed. Mosby
- 10. Tortora, G.J., and Derrickson, B (2006) Principles of Anatomy and Physiology11th ed. John Wiley & Sons, Inc.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	BIOTECHNOLOGY FOR HUMAN WELFARE					
Type of Course	DSE					
Course Code	MG6DSEBTS300					
Course Level	300					
Course Summary	Course provides a comprehensive overview of the application of biotechnolog various aspects of human well being	Course provides a comprehensive overview of the application of biotechnology in various aspects of human well being				
Semester	VI Credits 4					
Course Details	Learning ApproachLectureTutorialPracticalOthersHow How How How How How How How How How	urs				
Pre- requisites, if any						

CO No.	Expected Course Outcome	Learning Domains	PO No
1	To understand the historical background and application of biotechnology	K,U	2,3,10
2	To apply biotechnological methods to improve crop yield, quality and resistance to pests, diseases, and environmental stress	U,A,E	2,3,10
3	To gain a comprehensive understanding of the principles and techniques used in medical biotechnology	U,A,An	2,3,10
4	To equip the students with the knowledge and skills necessary to manipulate and optimize the production of desired metabolite	U,A.An,E	2,3,10
5	Students will develop the skills to assesses the suitability effectiveness of different biotechnological methods in solving specific environmental problems and also learn the biotechnological intervention for sustainable development		2,3,10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

MGU-UGP (HONOURS)
Syllabus

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
			45	
		Introduction		
	1.1	History of Biotechnology	1	1
	1.2	Role of biotechnology in human welfare	2	1
	1.3	Applications of biotechnology	2	1
		Agriculture Biotechnology		
1	1.4	Plant disease and its Classification Disease free plants development : meristem culture, ovule culture	2	2
	1.5	Biofortification of crops using biotechnology: mineral bio fortification using transgenic plants, vitamin	2	2
	1.6	biofortified rice, golden banana Transgenic plants: Flavr - Savr tomato	4	2
		Pest and Drought resistant crops GM crops Biopharming		
	1.7	Marker assisted selection of crops Molecular markers and its types, marker assisted selection, QTL mapping	2	2
		Medical Biotechnology		
	2.1 M(Production of recombinant vaccines and therapeutic recombinant products (blood factors, hormones, growth factors, interferon's, interleukins)	3	3
2	2.2	Gene therapy: Introduction, somatic and germ line gene therapy, gene replacement and gene addition, in vivo gene therapy, viral vectors, cancer gene therapy	5	3
	2.3	Diagnosis of various diseases using DNA Probe and monoclonal antibodies:	4	3
	2.4	Techniques used in the medical biotechnological field	3	3
	2.5	Current trends: Stem cell therapy, tissue engineering personalized medicine, regenerative medicine	3	3
		Industrial Biotechnology		
	3.1	Metabolite engineering: Introduction, ways for metabolite engineering, requirements and different approaches of	6	4

		metabolite engineering, applications. Metabolic engineering in plants and microbes		
	3.2	Protein engineering: Introduction, objectives, techniques, applications	3	4
	3.3	Enzyme engineering: Role of enzymes in food and industry	3	4
		Environmental biotechnology		
3	3.4	Introduction to Environmental Biotechnology: Providing an overview of the field and its importance in sustainable development, wastewater treatment	2	5
	3.5	Environmental Microbiology: Exploring the role of microorganisms in environmental processes, including biodegradation, bioaccumulation, and bioremediation. genetic engineering and bioremediation.	5	5
	3.6	Production of biofuel such as ethanol and biodiesel	1	5
	3.7	Bioplastics	1	5
	3.8	Environmental Monitoring and Analysis	1	5
		PRACTICALS	30	
4	£ 1	1. Perform of ethanolic fermentation using Baker's yeast2. Study of a plant part infected with a microbe3. To perform quantitative estimation of		4,5
	MO	residual chlorine in water samples 4. Isolation and analysis of DNA from minimal available biological samples 5. Case studies based on applications of biotechnology (any one topic from theory syllabus)		
5		Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, group interaction, Video presentations individual assignments, seminar, presentations, Article and general reviews		
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars Practical Total 15 marks: Lab performance/ record/ Industry		
	B. Semester End examination Theory Total 50 marks, Duration 1.5 hrs Short Essays 5 out of 7x4=20 marks Short questions-10 out of 12x2=20 marks Fill in the blanks -1x10=10 marks Practicals Total 35 marks Duration- 2 hrs Record 10 marks Examination 25 marks: Performance of Experiments 16 marks Viva-4 marks, Report writing- 5 marks		

- 1. Barnum, S. R. (2007). Biotechnology: An Introduction. Thomson, Brooks/Cole.
- 2. Brown, T. A. (2014). Gene cloning: An Introduction. John Wiley.
- 3. Dale, J. W., von Schantz, M., & Plant, N. (2010). From Genes to Genomes: Concepts and Applications of DNA Technology. Wiley–Blackwell.
- 4. Glick, B. J., Pasternac, J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. American Society for Microbiology Publisher.
- 5. Glick, B. R., Patten, C. L., & Delovitch, T. L. (Eds.). (2020). Medical Biotechnology. John Wiley & Sons.
- 6. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
- 7. Primrose, S. B., Twymann, R., & Old, B. (2001). Principles of Gene Manipulation: An Introduction to Genetic Engineering. Wiley–Blackwell.
- 8. Snyder, M. (2016). Genomics and Personalized Medicine: What Everyone Needs to Know (1st ed.). OUP-USA.

SUGGESTED READINGS

- 1. Baianu, I. C., Lozano, P. R., Prisecaru, V. I., & Lin, H. C. (2004). Applications of novel techniques to health foods, medical and agricultural biotechnology. arXiv preprint q-bio/0406047.
- 2. Chapekar, M. S. (2000). Tissue engineering: challenges and opportunities. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(6), 617-620.
- 3. Godbey, W. T. (2014). An introduction to biotechnology: the science, technology and medical applications. Elsevier.
- 4. Iwamoto, T., & Nasu, M. (2001). Current bioremediation practice and perspective. Journal of bioscience and bioengineering, 92(1), 1-8.
- 5. McKay, L. L., & Baldwin, K. A. (1990). Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiology reviews, 7(1-2), 3-14.
- Mora-Vásquez, S., Wells-Abascal, G. G., Espinosa-Leal, C., Cardineau, G. A., & García-Lara,
 S. (2022). Application of metabolic engineering to enhance the content of alkaloids in
 medicinal plants. Metabolic Engineering Communications, 14, e00194.
- 7. Pathak, S., Agarwal, A. V., Agarwal, P., & Trivedi, P. K. (2019). Secondary metabolite pathways in medicinal plants: approaches in reconstruction and analysis. Molecular Approaches in Plant Biology and Environmental Challenges, 339-364.
- 8. Pham, P. V. (2018). Medical biotechnology: Techniques and applications. In Omics technologies and bio-engineering (pp. 449-469). Academic Press.
- 9. Ribaut, J. M., & Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. Trends in Plant Science, 3(6), 236-239.
- 10. Sharma, H. C., Crouch, J. H., Sharma, K. K., Seetharama, N., & Hash, C. T. (2002). Applications of biotechnology for crop improvement: prospects and constraints. Plant Science, 163(3), 381-395.
- 11. Soller, M. (1994). Marker assisted selection-an overview. Animal Biotechnology, 5(2), 193-207.
- 12. Wilson, S. A., & Roberts, S. C. (2014). Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Current Opinion in Biotechnology, 26, 174-182.

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honours)Biological Techniques and Specimen Preparation					
Course Name	INTRODUCTION TO BIOINFORMATICS					
Type of Course	DSE					
Course Code	MG6DSEBTS301					
Course Level	300	GAI	NDH			
Course Summary	Introduce students to biological databases and their resources for developing skills in molecular biology research. They will also gain an understanding in correlating chemical structures with their biological activities by using tools in bioinformatics and cheminformaticshaving applications in biochemistry, molecular modeling and drug discovery.					
Semester	VI		Credits		4	Total
Course Details	LearningApproach	Lecture 4	Tutorial 0	Practical 0	Others 0	Hours 60
Pre- requisites,	None		A			<u>'</u>
f any	क्रिया	ATT TITE	TI PITT			

COURSE OUTCOMES (CO)

CO No.	ExpectedCourseOutcome (HONOURS)	Learning Domain*	PO No		
1	Gain knowledge on the significant role of biological databases and learn to navigate and search various biological databases for retrieving biological data.	U,K	2,3,10		
2	Analyze and interpret biological data and become proficient in the principles, methodologies, and tools in Bioinformatics	An,A	2,3,10		
3	Acquire the skills to perform sequence database searches, identify homologous sequences, and evaluate sequence similarity and analysis.	S,A	2,3,10		
4	Develop a foundation in the core principles and concepts of cheminformatics, including molecular representations, chemical databases, and structure-activity relationships.	U	2,3,10		
5	Apply the softwares and tool used in cheminformatics for research and industry setting applications in biochemistry and drug discovery	A,S	2,3,10		
	*Remember(K),Understand(U),Apply(A), Analyse(An),Evaluate(E),Create(C),Skill(S), Interest(I)andAppreciation(Ap)				

COURSECONTENT Content for Classroom transaction (Units)

Module	Units	Coursedescription	Hrs 60	CO No.
1	1.1	Bioinformatics.Definitions and brief history.Bioinformatics vs. Computational Biology; Scope / Research Areas of Bioinformatics. Nature of biological data, introduction to biological databases. Pharmaceutical, R&D and Bioinformatics industries and Institutions in India & the World. Case study on job profiles of a bioinformatician.	5	1
	1.2	Introduction to Biological Databases: Nature and scope of biological data. Understanding the importance and role of biological databases in modern research and bioinformatics Types of Biological Databases: Overview of various types of databases. Sequence databases NCBI (GenBank, UniProt), structure databases (PDB), gene expression databases (GEO), and metabolic pathway databases (KEGG).	5	1
	1.3	Database Searching Techniques: Introduction to different search methods and algorithms used in biological databases, including keyword searches. Literature Searches using PubMed Effective search strategies and advanced query construction. Critical evaluation of scientific literature and accessing full-text articles.	5	1,2
	2.1	Introduction to sequence alignment and its significance. Dynamic Programming algorithms- Needleman Wunsch& Smith Waterman Algorithms. Scoring matrices & substitution matrices	5	2,3
	2.2	Utilizing BLAST (Basic Local Alignment Search Tool) for sequence similarity searches. Interpreting BLAST results and assessing sequence alignments.	5	2,3
2	2.3	Multiple Sequence Alignment and Phylogenetic Analysis Introduction to multiple sequence alignment algorithms. Hands-on practice with ClustalW for multiple sequence alignment. Constructing phylogenetic trees using aligned sequences in MEGA	5	2,3
	3.1	Introduction to Cheminformatics: An overview of the field, combinatorial chemistry its applications, and its relevance in modern biochemistry and drug discovery	5	4
3	3.2	Chemical Databases and Data Mining: Teach students how to retrieve, analyze, and interpret chemical data from various databases, such as PubChem or Chemical Abstracts Service (CAS).	5	4,5

	3.3	Molecular Modeling and Visualization: Molecular modeling techniques, molecular docking, molecular dynamics simulations, and visualization using tools PyMOL and Chimera. Molecular Descriptors and Chemical Similarity: Using molecular descriptors to assess similarity between different chemical compounds.	5	4,5
	4.1	Cheminformatics Software and Tools: Introduce students to commonly used software and tools in the field, such as RDKit, ChemAxon,ChemSketch or Open Babel	5	4
4	4.2	Structure-Activity Relationship (SAR) Analysis: Exploring the principles and methodologies behind SAR analysis, which involves correlating chemical structures with their biological activities. QSAR in drug discovery.	5	5
	4.3	Application of the tools in cheminformatics tasks. The role of cheminformatics in drug discovery, including virtual screening, lead optimization, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions.	5	4,5
5		Teacher Specific Module		

Teaching an dLearning A pproach Classroom Procedure (Modeoftransaction) Lectures, group interactions, group seminar, power point presentation studies Teaching aids used- Audio Visual Presentation, Photographs, Internet			
	A. ContinuousComprehensiveAssessment(CCA) Theory Total = 25 marks		
AssessmentTy pes	Test Papers/Assignments/Seminars Practical Total= 15 marks Case Study presentations Chart/Visual presentations Case Study Reports		
	B. End Semesterexamination Theory Total = 50 marks (Duration 1.5 hrs) Short essays (5 out of 7) X 4= 20 marks Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks Practical Total =35 marks (Duration 2hrs) Record= 10 marks Viva= 5 marks Case Study Report=5 marks Examination=15 marks		

- 1. Bajorath, J. (2015). Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery. Royal Society of Chemistry.
- 2. Bandyopadhyay, S. (2014). Chemoinformatics: Theory, Practice, & Products. New Delhi, India: Springer India.
- 3. Chakraborty, A. (2017). Introduction to Chemoinformatics. New Delhi, India: PHI Learning Private Limited.
- 4. Deshmukh, M. V., &Deshmukh, R. V. (2011). Bioinformatics and functional genomics. PHI Learning Pvt. Ltd.
- 5. Gupta, R., & Singh, A. (2017). Computer-Aided Drug Design: Indian Perspective. New Delhi, India: Wiley India Pvt Ltd.
- 6. Jones, A. R., &Pevzner, P. A. (2012). Introduction to Bioinformatics: A Theoretical and Practical Approach. Oxford University Press.
- 7. Leach, A. R., & Gillet, V. J. (2007). An Introduction to Chemoinformatics. Springer.
- 8. Lesk, A. M. (2008). Introduction to bioinformatics. Oxford University Press.
- 9. Mohapatra, S., & Jena, B. K. (2015). Chemoinformatics: Advanced Applications. New Delhi, India: CRC Press.
- 10. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press.
- 11. Nagarajan, R. (2017). Bioinformatics: High performance parallel computer architectures. CRC Press.
- 12. Pevzner, P. A., & Shamir, R. (2009). Bioinformatics for biologists. Cambridge University Press.
- 13. Sharma, A., & Agarwal, A. (2015). Molecular Docking and Drug Design: Indian Approaches. Jaipur, India: InTechOpen.
- 14. Singh, P., & Jain, S. (2013). Computer-Aided Drug Design: Indian Scenario. Hyderabad, India: I.K. International Publishing House Pvt. Ltd.
- 15. Sundararajan, V. S., & Krishnan, A. (2015). Bioinformatics and computational biology: An introduction. CRC Press.
- 16. Xiong, J. (2006) Essential Bioinformatics. Cambridge University Press, Cambridge.

SUGGESTEDREADINGS

- 1. Chen, S., Yang, P., & Jiang, F. (2015). A novel approach for protein sequence analysis using deep learning techniques. Bioinformatics, 31(12), 1875-1881.
- 2. Desmukh, S. K., Srivastava, V. K., &Saxena, A. K. (2014). Molecular docking: challenges, advances and its use in drug discovery perspective. Current drug targets, 15(10), 951-970.
- 3. Gupta, S., Kapoor, P., & Sharma, G. (2018). Recent advances in cheminformatics: Methods, tools, and applications. Bioinformatics, 34(6), 997-1012.
- 4. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of medicinal chemistry, 47(7), 1750-1759.
- 5. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of medicinal chemistry, 46(4), 499-511.
- 6. Kitchen, D. B., Decornez, H., Furr, J. R., &Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949.
- 7. Miller, R. K., Anderson, N. J., & Brown, E. F. (2013). Comparative analysis of sequence alignment algorithms for bioinformatics applications. Bioinformatics, 29(4), 435-443.
- 8. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662.
- 9. Morris, G. M., Huey, R., & Olson, A. J. (2009). Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics, 24(1), 8.14.1-8.14.40.
- 10. Smith, J. D., Johnson, A. B., & Williams, C. D. (2010). Advances in bioinformatics sequence analysis: A comprehensive review. Bioinformatics, 25(15), 1901-1910.
- 11. Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
- 12. Wang, L., Li, W., & Zhang, X. S. (2016). Bioinformatics analysis of protein-protein interactions using cheminformatic tools. Bioinformatics, 32(7), 1018-1025.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation							
Course Name	ANIMAL CELL CULTURE AND STEM CELL BIOLOGY							
Type of Course	DSE							
Course Code	MG6DSEBTS302							
Course Level	300	300 GANA						
	Course give an understandi manipulating cell, enabling							
Semester	VII		Credits	ERS	4	Total		
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practical 0	Others 0	Hours 60		
Pre- requisites, if any	No		(FA)	190	1	1		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome HONOURS	Learning Domains*	PO No
1	Understanding the principles theories and application behind animal cell culture and stem cell biology	U	2,3,10
2	Develop proficiency in sterile technique and aseptic handling of cell cultures	U,A,S	2,3,10
3	Acquiring knowledge of different types of cell culture media and their formulation	U,A,S	2,3,10
4	Familiarizing the usage of equipment's used in cell culture labs	U	2,3,10
5	Gaining knowledge on stem cell plasticity and propagation of embryonic stem cells, nuclear transfer technology, animal cloning and stem cell differentiation	U,A,S	2,3,10
6.	Learning stem cells and tissue engineering, human embryonic stem cells	U,A	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
			60	1100
		Animal Cell culture		
		Introduction to Animal cell culture	20	
1	1.1	History of animal cell culture; Laboratory setup and equipment	3	1
	1.2	Types of cell culture media, media constituents, CO2 incubation & bicarbonate Buffering. Sterilization of cell culture media	4	3,4
	1.3	Isolation of tissue. Disaggregation of tissue – Mechanical and Enzymatic methods. Primary and secondary cell culture, monolayer culture and suspension culture, Passaging number	5	1
	1.4	Specialized cell culture technique: Histotypic cell culture, embryonic cell culture and adult stem cell culture, organ culture, fetal cell culture, three-dimensional cell culture	6	3
	1.5	Maintenance of cell lines- cryopreservation and germplasm storage.	2	2
		Application of animal cell culture technology	10	
2	2.1	Vectors for animal cells- adeno based vectors, SV 40, baculovirus. Measurement of viability & cytotoxicity; Cell cloning and selection; Cell synchronization	5	3
	2.2	Application of animal cell culture technology: Production of human and animal vaccines and pharmaceutical protein, Transgenesis, transgenic mice and cattle.	5	1,3
		Stem cell Biology		
		Introduction to stem cell biology	18	
3.	3.1	Basic Stem Cell Biology- Introduction to stem cells, Types of stem cells (Embryonic, Adult, and Induced Pluripotent Stem Cells), Stem cell niches, Potency and differentiation.	5	1
	3.2	Animal cloning: Overview; challenges in human therapeutic cloning; somatic cell nuclear transfer in humans: pronuclear early embryonic development.	5	5

	3.3	Stem cell plasticity: Overview; self-renewal potential; differentiation versus stem cell renewal; trans differentiation	4	5
	3.3	Stem cell differentiation: Overview; adult stem cells; fetal stem cells; human embryonic stem cells	4	5
		Application of Stem Cell Therapy& Ethical and legal issues in stem cell Research	12	
	4.1	Stem cell in disease modelling, gene therapy, organ transplantation, Personalized medicine.	6	6
4	4.2	Ethical consideration in embryonic stem cell research, Informed consent in stem cell research, Ownership and patenting issues, controversies and public opinion, Regulation of stem cell research-global perspective.	6	6
5		Teacher specific module		

	3 1/1/2
Teaching & Learning Approach	Classroom Procedure (Mode of transaction) ICT Enabled Learning, Tutorial, Lecturing, Seminars, Articles and general reviews
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar
	B. End Semester examination Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, Short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

References

- 1. Anderson, W. A., et al. (2018). Advances in Biochemical Engineering/Biotechnology. Springer.
- 2. Chawla, H. S. (2002). Biotechnology in Crop Improvement. CRC Press.
- 3. Freshney, R. (2005). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (5th ed.). John Wiley & Sons.
- 4. Gupta, P. K. (2019). Elements of Biotechnology. Rastogi Publications.
- 5. Hammond, J., et al. (2017). Plant Biotechnology. Springer Verlag.

- 6. Henry, R. J. (1998). Practical Application of Plant Molecular Biology. Chapman & Hall.
- 7. In Vitro Cultivation of Animal Cells. (2002). Elsevier India Pvt Ltd.
- 8. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., .. & Matsudaira, P. (2016). Molecular cell biology. Macmillan.

MGU-UGP (HONOURS)

Syllabus

- 9. Mantell, S. H., et al. (1991). Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants. Butterworth-Heinemann.
- 10. Masters, J. R. W. (2000). Animal Cell Culture: A Practical Approach (3rd ed.). Oxford University Press.
- 11. Narayanswamy, S. (2013). Plant Cell and Tissue Culture. Tata McGraw-Hill.
- 12. Robert Lanza Handbook of Stem Cells Volume 1 and 2 Eds
- 13. Vasil, A. K. (1984). Cell Culture and Somatic Cell Genetics of Plants (Vols. 1-3). Academic Press.

SUGGESTED READINGS

- 1. Al-Rubeai, M. (Ed.). (2015). Animal cell culture.
- 2. Chaicharoenaudomrung, N., Kunhorm, P., & Noisa, P. (2019). Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World journal of stem cells, 11(12), 1065.
- 3. Clynes, M. (Ed.). (2012). Animal cell culture techniques. Springer Science & Business Media.
- 4. McKee, C., & Chaudhry, G. R. (2017). Advances and challenges in stem cell culture. Colloids and surfaces B: Biointerfaces, 159, 62-77.

MGU-UGP (HONOURS)

Syllabus

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation						
Course Name	FROM LAB TO LIFE						
Typeof Course	VAC						
Course Code	MG6VACBTS300	NIB					
Course Level	300	300 GAND					
Course Summary	skills required to navigate	Value added course which aims to bring awareness and understanding of the life skills required to navigate smoothly in the world we live in and its relevance in promoting well being and quality of life.					
Semester	VI		Credits	为	3		
Course Details	LearningApproach	Lecture 3	Tutorial 0	Practical 0	Others 0	Total Hours 45	
Pre- requisites, if any	None Carrier	अमृत	सञ्ज				

COURSE OUTCOMES (CO)

Expected Course Outcome	Learning Domain*	PO No
Understand the fundamental principles of nervous system in biology and life, its relation to overall well being.	U, K	2,3,10
Learning the structure and function of the brain and how it's responsible for maintaining human health and wellness.	U,K	2,3,10
Develop the ability to express their thoughts and ideas freely and confidently and learn effective strategies to prioritize tasks on their own.	,	2,3,10
Understand and manage their emotions and evaluate different perspectives, and make informed decisions	U,An,C	2,3,10
Develop strategies and skills to deal with setbacks, manage stress, and cope with adversity, fostering mental and emotional resilience.	A,C	2,3,10
	Understand the fundamental principles of nervous system in biology and life, its relation to overall well being. Learning the structure and function of the brain and how it's responsible for maintaining human health and wellness. Develop the ability to express their thoughts and ideas freely and confidently and learn effective strategies to prioritize tasks on their own. Understand and manage their emotions and evaluate different perspectives, and make informed decisions Develop strategies and skills to deal with setbacks, manage stress, and	Understand the fundamental principles of nervous system in biology and life, its relation to overall well being. Learning the structure and function of the brain and how it's responsible U,K for maintaining human health and wellness. Develop the ability to express their thoughts and ideas freely and confidently and learn effective strategies to prioritize tasks on their own. Understand and manage their emotions and evaluate different perspectives, and make informed decisions Develop strategies and skills to deal with setbacks, manage stress, and A,C

COURSE CONTENT

Content for Classroom transaction(Units)

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	Introduction to the nervous system; Sympathetic,parasympathetic and Autonomous system.	3	1,2
1	1.2	Structure and functions of the brain (With reference to regions which play roles in stress responses)	3	1,2
	1.3	The role played by neurotransmitters and hormones in stress responses.	3	1,2
	1.4	Understanding the perspectives of life and how it relates to biology and wellness.	3	1,2
	2.1	Life Skills needed for a healthy life Effective Communication Critical Thinking	3	3
2	2.2	Study and motivation, Time management Lifelong learning, Financial literacy Social media, its impact and how it changed our lives.	4	1,4
	2.3	Problem solving, Scientific temper, Resilience Responsibility and Commitment. Emotional intelligence	5	3,4
	3.1	Role of sleep and mental health	2	1,2,4
3	3.2	Managing difficult emotions Anger Management Grief Management Stress management	4	4,5
	3.3	Relaxation Techniques 1. Yoga 2. Cardio training 3. Mindfulness 4. Meditation (Hands on training sessions and teaching)	15	1,2,4,5
4		Teacher Specific module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars
	B. End Semester Examination Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks

REFERENCES

- 1. Campbell, N. A., & Reece, J. B. (2019). Biology. Pearson.
- 2. Gardner, R. (2020). Mindfulness for Stress Relief: Guided Meditations to Rewire Your Brain for Relaxation. Los Angeles, CA: Publisher.
- 3. Guyton, A. C., & Hall, J. E. (2015). Textbook of Medical Physiology (13th ed.). Philadelphia, PA: Elsevier.
- 4. Johnson, G. B., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology. McGraw-Hill Education.
- 5. Johnson, M. (2017). The Stress Solution: Proven Techniques to Reduce Stress and Improve Well-being. Chicago, IL: Publisher. GP (HONOURS)
- 6. Larkin, M. (2013). Health and Well-Being Across the Life Course; Sage Publications.
- 7. Mader, S. S., & Windelspecht, M. (2020). Essentials of Biology. McGraw-Hill Education.
- 8. Nestler, E. J., Hyman, S. E., &Malenka, R. C. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). McGraw-Hill Medical.
- 9. Singh, R. K. (2020). Medical Biochemistry: Principles and Applications. New Delhi, India: ABC Publishers.
- 10. Smith, J. (2021). Coping with Grief: Effective Techniques for Healing and Recovery. New York, NY: Publisher.
- 11. Tortora, G. J., &Derrickson, B. H. (2017). Principles of Anatomy and Physiology (15th ed.). Hoboken, NJ: Wiley.

- 12. Chambers, K. (2017). Anger Management: A Psychologist's Guide to Identifying and Controlling Anger Master Your Emotions and Regain Control of Your Life. Publisher: CreateSpace Independent Publishing Platform.
- 13. Brown, S., & Williams, A. (2019). Stress Management Strategies: A Practical Guide. Boston, MA: Publisher.
- 14. Nutt, D. J., Malizia, A. L., & Zohar, J. (2008). Current perspectives on the neurobiology of anxiety and its treatment. Human Psychopharmacology: Clinical and Experimental, 23(6), 363-374.
- 15. ThichNhat Hanh (2002) Anger: Wisdom for Cooling the Flames.

SUGGESTED READINGS

- 1. Anderson, C. M., & Miller, E. F. (2019). The microbiome and its implications for human health. Current Biology, 29(16), R719-R722.
- 2. Brown, K. L., & Davis, R. M. (2021). The impact of nutrition on immune function: A comprehensive review. Nutrition Reviews, 79(2), 144-165.
- 3. Clark, A. J., & Patel, N. B. (2019). The influence of genetics on disease susceptibility. Current Opinion in Immunology, 60, 98-102.
- 4. Hall, M. E., & Loprinzi, P. D. (2020). Physical activity and cardiovascular health: An update. American Journal of Lifestyle Medicine, 14(6), 580-586.
- 5. Johnson, L. M., & Thompson, R. W. (2020). The effects of stress on mental health and well-being. Journal of Health Psychology, 25(8), 1052-1065.
- 6. Roberts, S. G., & Williams, M. A. (2019). Understanding the genetics of obesity: From genes to pathways. Clinical Genetics, 95(1), 6-14.
- 7. Smith, J. D., & Johnson, A. B. (2020). The role of exercise in promoting cardiovascular health. Journal of Applied Physiology, 125(3), 456-468.
- 8. Smith, J. D., & Johnson, A. L. (2020). Effective Stress Management Techniques: A Comprehensive Guide. Journal of Applied Psychology, 25(2), 134-150.
- 9. Taylor, R. W., & Williams, S. M. (2019). Dietary strategies for weight management. Nature Reviews Endocrinology, 15(5), 273-277.
- 10. Thompson, H. E., & Jones, C. M. (2020). The role of exercise in preventing chronic diseases. Current Opinion in Cardiology, 35(5), 543-549.
- 11. Wilson, A. B., & Davis, M. C. (2021). Sleep and its impact on physical and mental health. Sleep Medicine Reviews, 57, 101435.

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honours) Biologica	BSc (Honours) Biological Techniques and Specimen Preparation						
Course Name	PRACTICAL BIOINFOR	PRACTICAL BIOINFORMATICS						
Type of Course	SEC	EC						
Course Code	MG6SECBTS300	MG6SECBTS300						
Course Level	300	300 GANDA						
Course Summary	Introductory level course to relevance in applied life so	Introductory level course for gaining practical experience in Bioinformatics and its relevance in applied life science research.						
Semester	VI		Credits		3			
Course Details	LearningApproach	Lecture 3	Tutorial 0	Practical 0	Others 0	Total Hours 45		
Pre- requisites, if any	None		P			•		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome HONOURS	Learning Domain*	PO No
1	To gain practical knowledge on the types of biological databases	U, A	
2	To retrieve, analyze, interpret and annotate molecular data from various biological databases	An,A	
3	To obtain hands on experience in pairwise and multiple sequence alignment	U,A	
4	To understand evolutionary relationships using tools and softwares in phylogenetic analysis	An,E,U	
5	To use softwares and tools for visualizing and understanding molecules and to perform molecular docking	U,An,A	

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			45	No.
1	1.1	Introduction to Biological Databases. Understanding the importance and role of biological databases in modern research and bioinformatics. Types of Biological Databases: Overview of various types of databases Introduction to the NCBI database and its importance in bioinformatics.	5	1
	1.2	PRACTICAL WORKFLOW Navigating databases GenBank, UniProt, and NCBI to retrieve specific information and understand the data format. Retrieving DNA, RNA, and protein sequences from various databases	5	1,2
	1.3	Introduction to different search methods and algorithms used in biological databases, including keyword searches.	3	1,2
	1.4	PRACTICAL WORKFLOW Functional annotation of genes and proteins using databases such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).	3	2
2	2.1 M	Introduction to sequence alignment and its significance. Utilizing BLAST (Basic Local Alignment Search Tool) for sequence similarity searches. Interpreting BLAST results and assessing sequence alignments. Pairwise Sequence Alignment and Phylogenetic Analysis	5	3
	2.2	Performing pairwise alignments using BLAST. Aligning DNA, RNA, or protein sequences and interpreting the results.	3	3
	2.3	Introduction to multiple sequence alignment algorithms. Hands-on practice with ClustalW for multiple sequence alignment. Constructing phylogenetic trees using aligned sequences.	5	3,4
	2.4	PRACTICAL WORKFLOW Construct phylogenetic trees using molecular sequence data by tools MEGA or PhyML and interpreting evolutionary relationships.	3	3,4

	3.1	Introduction to Molecular Visualization. Understanding Molecular Visualization		
		Softwares.		
		PRACTICAL WORKFLOW	_	~
		Using molecular visualization softwares RASMOL, PyMOL, SPDB Viewer and	5	5
		Chimera X. To load protein structures,		
		manipulate them in 3D, and visualize		
3		different molecular properties.		
	3.2	Introduction to Computer Aided Drug		
	3.2	Design.	3	5
		Stages in Drug Discovery, Structure based		-
		drug design. Molecular Docking Protein Ligand Docking and Workflow		
	3.3	PRACTICAL WORKFLOW		
		Molecular docking using freely available	5	5
		softwares to predict the binding affinity of		J
		small molecules to a protein target.		
4		Teacher Specific Module		

Teachingan dLearningA pproach AssessmentTy pes	ClassroomProcedure(Modeoftransaction) Lectures, group interactions, group seminar, power point presentations Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources, hands on training of Bioinformatics tools and softwares MODEOFASSESSMENT A. ContinuousComprehensiveAssessment(CCA) Theory Total = 25 marks Test Papers/Assignments/Seminars
	B.End Semester Examinations Theory Total = 50 marks (Duration 1.5hrs) Short essays (5 out of 7) X 4= 20 marks Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks

REFERENCES

- 1. Bajorath, J. (2015). Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery. Royal Society of Chemistry.
- 2. Bandyopadhyay, S. (2014). Chemoinformatics: Theory, Practice, & Products. New Delhi, India: Springer India.
- 3. Chakraborty, A. (2017). Introduction to Chemoinformatics. New Delhi, India: PHI Learning

Private Limited.

MGU-UGP (HONOURS)
Syllabus

- 4. Deshmukh, M. V., &Deshmukh, R. V. (2011). Bioinformatics and functional genomics. PHI Learning Pvt. Ltd.
- 5. Gupta, R., & Singh, A. (2017). Computer-Aided Drug Design: Indian Perspective. New Delhi, India: Wiley India Pvt Ltd.
- 6. Jones, A. R., & Pevzner, P. A. (2012). Introduction to Bioinformatics: A Theoretical and Practical Approach. Oxford University Press.
- 7. Leach, A. R., & Gillet, V. J. (2007). An Introduction to Chemoinformatics. Springer.
- 8. Lesk, A. M. (2008). Introduction to bioinformatics. Oxford University Press.
- 9. Mohapatra, S., & Jena, B. K. (2015). Chemoinformatics: Advanced Applications. New Delhi, India: CRC Press.
- 10. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press.
- 11. Nagarajan, R. (2017). Bioinformatics: High performance parallel computer architectures. CRC Press.
- 12. Pevzner, P. A., & Shamir, R. (2009). Bioinformatics for biologists. Cambridge University Press.
- 13. Sharma, A., & Agarwal, A. (2015). Molecular Docking and Drug Design: Indian Approaches. Jaipur, India: InTechOpen.
- 14. Singh, P., & Jain, S. (2013). Computer-Aided Drug Design: Indian Scenario. Hyderabad, India: I.K. International Publishing House Pvt. Ltd.
- 15. Sundararajan, V. S., & Krishnan, A. (2015). Bioinformatics and computational biology: An introduction.CRC Press. GU-UGP (HONOURS)
- 16. Xiong, J. (2006) Essential Bioinformatics. Cambridge University Press, Cambridge.

SUGGESTEDREADINGS

- GGESTEDREADINGS

 1. Chen, S., Yang, P., & Jiang, F. (2015). A novel approach for protein sequence analysis using deep learning techniques. Bioinformatics, 31(12), 1875-1881.
- 2. Deshmukh, S. K., Srivastava, V. K., & Saxena, A. K. (2014). Molecular docking: challenges, advances and its use in drug discovery perspective. Current drug targets, 15(10), 951-970.
- 3. Gupta, S., Kapoor, P., & Sharma, G. (2018). Recent advances in cheminformatics: Methods, tools, and applications. Bioinformatics, 34(6), 997-1012.
- 4. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of medicinal chemistry, 47(7), 1750-1759.

- 5. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of medicinal chemistry, 46(4), 499-511.
- 6. Kitchen, D. B., Decornez, H., Furr, J. R., &Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949.
- 7. Miller, R. K., Anderson, N. J., & Brown, E. F. (2013). Comparative analysis of sequence alignment algorithms for bioinformatics applications. Bioinformatics, 29(4), 435-443.
- 8. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662.
- 9. Morris, G. M., Huey, R., & Olson, A. J. (2009). Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics, 24(1), 8.14.1-8.14.40.
- 10. Smith, J. D., Johnson, A. B., & Williams, C. D. (2010). Advances in bioinformatics sequence analysis: A comprehensive review. Bioinformatics, 25(15), 1901-1910.
- 11. Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
- 12. Wang, L., Li, W., & Zhang, X. S. (2016). Bioinformatics analysis of protein-protein interactions using cheminformatic tools. Bioinformatics, 32(7), 1018-1025.

MGU-UGP (HONOURS)

Syllabus

MGU-UGP (HONOURS)
Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	MICROBIAL FOOD SAFETY					
Type of Course	DCC					
Course Code	MG7DCCBTS400					
Course Level	400	400				
Summary	The course will enable students to apply the learning of microbiology concepts toward the role of microbes in food production. The role of microbes in food spoilage, preservation and various food borne diseases will be discussed. Students will be able to comprehend the microbiological quality control and foodborne illnesses investigation procedures for ensuring food safety and hygiene; to understand current national and international food safety rules and regulations; to know the requirements and components of food safety management system (FSMS)					
Semester	VII		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		3	0	1	0	75
Pre-requisites, if any	विद्या इ	प्रमृतस	महन् <mark>त</mark> ि		,	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	Developing an understanding about the concept, importance and scope of Food microbiology and food safety	U	2
2	Learners will be able to recognize different types of food safety hazards, including biological, chemical, and physical hazards	U,A	2,3,9,10
3	Students will be able to find the characteristics, related food, and symptoms of each food safety hazards	U,A, An, S	2,3,9,10
3	Learners will be able to implement strategies for ensuring food safety and quality in food processing and production	U, A, An, E	2,3,9,10
4	Helps to examine the appropriateness of food safety management systems in the current job market.	U, A, An, E	2,3,9,10
5	Learners can analyze risks in agri-food value chains	U,A, An, S	2,3,9,10
6	Learners can apply generic principles of quality management to specific situations of food quality assurance management.	U, A, An	2,3,9,10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill(S), Interest(I) and Appreciation (Ap)

COURSE CONTENTContent for Class room transaction (Units)

Module	Unit	Course description	Hrs 45	CO No.
		Overview and Basic Concepts of Food safety	8	
	1.1	General concepts of food safety: adulteration, filth, microorganisms, chemical additives. Types of adulteration in common foods, impact on human health and tests to detect common adulterants.	2	1
	1.2	Food Safety issues and factors affecting food safety (Physical, chemical and microbiological hazards)	1	1,2
1	1.3	Factors influencing microbial growth in foods: intrinsic and extrinsic parameters. Intrinsic parameters of food that affect microbial growth: pH, water activity, oxidation reduction potential, nutrient content, antimicrobial constituents & biological structures.	3	1,2
	1.4	Extrinsic parameters of food that affect microbial growth: relative humidity, storage temperature, gaseous environment.	2	1,2
		Microbiological hazards in food	12	
	2.1	Foodborne diseases: infections, poisoning, toxico-infections	3	3
	2.2	Sources and transmission of bacteria in foods: human, animal, and environmental reservoirs; crosscontamination;	3	3
2	2.3	Salmonella, Clostridium botulinum, Vibrio, Hepatitis A, Campylobacter jejuni, Listeria monocytogenes. Emerging foodborne pathogens: E. coli O157.	4	3
-	2.4	Fungal Toxins: Aflatoxin, Ochratoxin A, Fumonisins	2	3
		Microbial indicators of food safety and quality	10	
	2.5	Enumeration of bacteria from food using different growth media, plating techniques.	3	3
	2.6	Coliforms- detection & enumeration, coliform criteria & standards	2	3
	2.7	Detection of Salmonella in food	1	3
	2.8	Risk associated with ready to eat food (RTF).	1	3
3		Food Quality Regulations and Food safety management systems	15	
	3.1	Government regulatory agencies and food policies: Food Safety and standards authority of India(FSSAI)	2	4,5,6
	3.2	United States Food and Drug Administration (US-FDA)	1	4,5,6

	3.3	Codex alimentarius Commission	1	4,5,6
	3.4	Introduction to Food Safety Management System (FSMS) ISO: 22000	3	4,5,6
	3.5	Food Safety Management Systems – Requirements, Goals and use of FSMS (ISO 22000) Methodology for Developing an ISO 22000 and HACCP	3	4,5,6
	3.6	HACCP - A global requirement for food safety assurance Hazard analysis criteria control points (HACCP) system for ensuring food safety. Guidelines in the application of HACCP system	2	6,7
	3.7	HACCP principles - Conduct a hazard analysis, CCP identification, establish critical limits for each CCP, establish CCP monitoring procedures, establish corrective actions procedures, establish procedures for HACCP verification and validation, documenting the HACCP Program	3	6,7
		PRACTICAL	30	
4	4.1	 Detection of adulterants in milk Detection of adulterants in milk based products Detection of adulterants in food grains and their products. Enumerate bacteria from food samples in different growth media using dilution plating technique Enumerate coliforms from water / food Detection of salmonella from food Conduct survey on hygienic and sanitary condition of the quality of food and apply the guidelines for food safety and quality systems. Report on HACCP for Food industry 	30	1,2,3,4 ,5,6,7

	Classroom Procedure (Mode of transaction)			
Teaching and	Lecture, group interaction, individual assignments, seminar, presentations			
Learning Approach	A visit to laboratories/ food business units to see the function and Operational procedures			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA) Theory Total=25 marks Quiz/ Test Papers/ seminars			
Assessment Types	Practical Total 15 marks Lab performance/ record/ field visit report			
	B. End Semester Examination Theory Total 50 marks, Duration 1.5 hrs			
	Short Essays 5 out of 7x4=20 marks			
	Short questions-10 out of 12x2=20 marks			
	Fill in the blanks -1x10=10 marks			
	Practicals Total 35 marks Duration- 2 hrs			
	Record 10 marks			
	Examination 25 marks: Performance of experiments 16 marks			
	Viva-4 marks, research institute visit report- 5 marks			

References

MGU-UGP (HONOURS)

- 1. Adams, M. R., & Moss, M. O. (2000). Food microbiology. Royal society of chemistry.
- 2. Berlanga, M. (2005). Food Microbiology: An Introduction. Thomas J. Montville, Karl R. Matthews (eds). International Microbiology, 8(1), 74-75.
- 3. Bioprocess Technology: P T Kalaichelvan, I Arul Pandy: MJP Publishers.
- 4. Bacteriological Analytical Manual Chapter 3 Reference: Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 4; Microbiological analysis –Manual FSSAI, India pp28-36; Reference: Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Pp51-
- 5. Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.). (2020). Food microbiology: fundamentals and frontiers. John Wiley & Sons.
- 6. Frazier, W. C., & Westhoff, D. C. (1978). Food Microbiology; TATA McGraw-Hill Pub. Co. Ltd. New Delhi.

- 7. James M.Jay. "Modern Food Microbiology", CBS Publishers & Distributors, 1987.
- 8. Lund, B. M., Baird-Parker, T. C., & Gould, G. W. (Eds.). (2000). Microbiological safety and quality of food (Vol. 1). Springer Science & Business Media.
- 9. Piefzer F.M. "Food Microbiology" Academic Press, 1989
- 10. Potten N.M. "Food Science" The AVL Publishing Co. 2002
- 11. Roger A., Gorden B., and John T., "Food Biotechnology", 1989
- 12. Review- The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health 2010, A. Cencic and W. Chingwaru Nutrients 2010, 2, 611-625

SUGGESTED READINGS

- 1. Baltz, R. H., Demain, A. L., & Davies, J. E. (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press.
- 2. Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press.
- 3. Handbook of Analysis and Quality Control for Fruit and Vegetable Products (English, Hardcover, Ranganna S.)
- 4. Industrial microbiology by Patel A.H. (2007). New Age International Publishers.
- 5. Alcamo by Pommerville J.C. (2011).
- 6. Quality Control in the Food Industry, Volume 2 edited by S Herschdoerfer.
- 7. Biotechnology: Expanding Horizons by Singh B.D. (2008). Kalyani Publishers, India.
- 8. General Microbiology by Stanier R.Y., Ingraham J.L., Wheelis M.L. and Painter R.R. (2008). Macmilian Press London.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological	BSc (Honours) Biological Techniques and Specimen Preparation						
Course Name	BIOTECHNOLOGY IN CLINICAL DIAGNOSIS							
Type of Course	DCC							
Course Code	MG7DCCBTS401	MG7DCCBTS401						
CourseL evel	400							
Course Summary	Biotechnology in clinical diagnosis is a broad field that deals with the exploitation of living organisms to develop products beneficial for sustainable development. It harnesses cellular and molecular processes to develop products and technologies that could help in improving human life on earth. The course will enable students to apply the learning of biotechnology in the health sector. Students will be exposed to various techniques such as Recombinant DNA Technology, Polymerase Chain Reaction (PCR) and Enzyme-Linked Immunosorbent Assay (ELISA), etc. that helps in the early diagnosis of diseases							
Semester	/विद्यास शा	प्रमृतर	Credits		4			
Course Details	Learning Approach MGU-UG	Lecture 4	Tutorial	Practical 0	Others 0	Total Hours		
Pre- requisites, if any	Student with basic knowled biochemistry and biotechno	_	cular biolog	gy, Foundatio	ons in cell b	iology,		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domain*	PO No
1	Developing an understanding about the concept, importance and scope of Biotechnology in diagnosis of diseases	Ü	2
2	Familiarize students with molecular diagnostic technologies.	U, A	2,3,9,10
3	Enhance understanding of computational methods for analyzing molecular diagnostic data.	U	2,3,9,10
4	Develop skills to interpret molecular test results for clinical decision-making	U,A,I,S	2,3,9,10

5	Students will be able to know how to use the main methodologies and instruments that characterize biotechnologies for the prevention, diagnosis and treatment of human diseases	U,AAn,I,S	2,3,9,10				
	*Remember(K), Understand (U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)						

COURSE CONTENT Content for Class room transaction (Units)

Module	Unit	Course description	Hrs (60)	CO No.
		Microbes and parasites:	10	
	1.1	Historical introduction Bacteria, Fungi, Viruses, Protozoas,	2	1
1	1.2	Helminthes and Arthropods, Prions;	4	
	1.3	Host-parasite relationship; Infection-mode of transmission in infection, factors predisposing to microbial pathogenicity, types of infectious diseases	4	2,3
		Methods of Disease Diagnosis:	20	
	2.1	Sampling site-normally sterile and with normal microflora; Sample collection-method of collection, transport and processing of samples, interpretation of results;	2	2,3,4
	2.2	Diagnostic methods- cultured: microscopy, microbial antigen; non-cultured: PCR based microbial typing:	2	2,3,4
2	2.3	Eubacterial identification based on 16s rRNA sequences	2	2,3,4
	2.4	Amplified ribosomal DNA Restriction analysis(ARDRA)-	2	2,3,4
	2.5	Culture independent analysis of bacteria-DGGE and TRFLP	2	2,3,4
	2.6	Molecular diagnosis of fungal pathogens based on 18s rRNA sequences	5	2,3,4
	2.7	Detection of viral pathogens through PCR	3	2,3,4
	2.8	Monoclonal antibodies in therapy.	2	2,3,4
		Diagnosis of Infections :	18	
3	3.1	Bacteria- Streptococcus, Coliforms, Salmonella, Shigella, Vibrio and Mycobacterium;	8	5
	3.2	Fungi-Major fungal diseases, Dermatophytoses, Candidiosis and Aspergillosis	5	5

	3.3	DNA and RNA Viruses- POX virus, Rhabdo Virus, Hepatitis Virus and Retro Virus	5	5
		Molecular Diagnostics in Genetic and Inherited Disorders	12	5
4	4.1	Genetic testing and inherited diseases on-Invasive Prenatal testing (NIPT) and reproductive genetics,	8	5
	4.2	Molecular diagnostics in rare genetic disorders	4	5
5		Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, ICT enabled classes, Group discussions, seminar presentations, case studies and activities
прргосси	Note: Teaching aids like photographs, models, videos, short films,
	documentaries related to the topic may be used
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar/ Case studies
	B. Semester End examination
	Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

REFERENCES

1. Cassimeris, L., Viswanath, R., Lingappa, V.R., & Jones, G.P. (2016). Lewin's Cells. London: Bartlett Publishers.

Syllabus

- 2. Clark, D.P., & Pazdernik, N.J. (Eds.). (2001). Biotechnology- Applying genetic revolution. New York: Elsevier.
- 3. Cooper, G.M., & Hausman, R.E. (2013). The Cell A molecular Approach. Washington: ASM Press.
- 4. Grody, W. W., Nakamura, R. M., Strom, C. M., & Kiechle, F. L. (Eds.). (2017). Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory.
- 5. Jain, K.K. (Ed.). (2011). The Handbook of Biomarkers.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation			
Course Name	BIOSAFETY, BIOETHICS AND IPR			
Type of Course	DCC			
Course Code	MG7DCCBTS402			
Course Level	400			
Course Summary	To provide a comprehensive understanding of the ethical, legal, and regulatory aspects associated with the field of biosafety and bioethics, while also equipping students with knowledge about intellectual property rights and their implications in the biotechnology sector.			
Semester	VII Credits 4 Total Hours			
Course Details	Learning Approach Lecture Tutorial Practical Others 4 0 0 0 60			
Pre- requisites, if any	NO विद्या अस्तमञ्जूते 🖟			

COURSE OUTCOMES (CO

CO No.	MGU-UGP (HONOURS) Expected Course Outcome	Learning Domains*	PO No
1	Gain a comprehensive understanding of the concept of biosafety and its importance in scientific research and healthcare.	U, K	2,3,10
	Acquire the knowledge and skills to identify and manage potential risks and hazards associated with biological materials.	S, E	2,3,10
	Develop the ability to design and implement biosafety protocols and measures to ensure a safe working environment in laboratory settings.	A, An	2,3,10
4	Comply with national and international regulations and guidelines governing biosafety.	U, K	2,3,10
5	Identify and assess the potential risks associated with genetically modified organisms (GMOs) and their impact on human health and the environment.	U, An, A, E	2,3,10
	Develop a comprehensive understanding of ethical principles and theories applicable to biological research and healthcare.	U, K	2,3,10
7	Demonstrate ethical conduct and decision-making in scientific research.	A, An, E	2,3,10

	Understand the significance of intellectual property rights in the field of biosciences.	U, K	2,3,10
9	Understand guidelines to protect biological inventions	U,K	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 60	CO No.
		BIOSAFETY: INTRODUCTION AND GUIDELINES	12	
1	1.1	Introduction, biosafety issues; Biological Safety Cabinets & their types	2	1
	1.2	Primary Containment for Biohazards	2	1,2
	1.3	Biosafety Levels of Specific Microorganisms.	2	2,3
	1.4	Biosafety guidelines and regulations (National and International); Regulatory bodies of India-RCGM and GEAC.	3	3,4
	1.5	GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc	3	4,5
		RISK ANALYSIS AND GUIDELINES	8	
	2.1	Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication;	4	5
2	2.2	Overview of International Agreements - Cartagena Protocol.	4	4
		INTRODUCTION TO BIOETHICS & ETHICAL PRINCIPLES IN BIOLOGICAL RESEARCH	15	
	3.1	Overview of bioethics, ethical principles, such as autonomy, beneficence, non-maleficence, and justice	3	6
3	3.2	Ethical Issues in Healthcare- such as end-of-life decisions, genetic testing, and resource allocation. ethical challenges related to patient autonomy, confidentiality, and access to healthcare	3	6,7
	3.3	Ethical Conduct in Scientific Research- importance of integrity, honesty, and transparency in scientific research	5	6,7
	3.4	Ethical implications of genetic engineering, stem cell research, and reproductive technologies	4	6,7
		INTRODUCTION TO INTELLECTUAL PROPERTY	15	
		Introduction to Intellectual Property and History. Patents, Trademarks, Copyright, Trade secrets, Trade	6	8

	4.1	dress, Industrial Design and Traditional Knowledge, Geographical Indications		
	4.2	Importance of IPR – patentable and non-patentable – patenting life	4	8
4	4.3	Legal protection of biotechnological inventions – World Intellectual Property, Rights Organization (WIPO),	5	8,9
		GRANT OF PATENT, PATENTING AUTHORITIES AND TREATIES	10	
	4.1	Types of patent applications: provisional and complete specifications	3	8
	4.2	An introduction to Patent Filing Procedures; Patent licensing and agreement; Patent infringement, Rights and Duties of patent owner. Basmati rice patent issue: a Case study.	3	8
	4.3	Agreements and Treaties: GATT, TRIPS Agreements; WIPO Treaties; Budapest Treaty on international recognition of the deposit of microorganisms; UPOV & Brene conventions; Patent Co-operation Treaty (PCT); Indian Patent Act 1970 & recent amendments	4	9
5		Teacher specific module		

	Classroom Procedure (Mode of transaction)			
Teaching and	aching and Classroom lectures, group interactions, group seminar, power point			
Learning	presentations, Article and general reviews			
Approach	MGII-LIGP (HONOLIRS)			
	Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
Assessment	Theory Total = 30 marks			
Types	Test Papers/Assignments/Seminars			
Types				
	B. End Semester examination			
	Theory Total = 70 marks (Duration 2 hrs)			
	Short essays (8 out of 10) X 4= 32 marks			
	Short Questions (14 out of 16) X 2= 28 marks			
	Multiple Choice Questions $(1X 10) = 10$ marks			
	_ ` ` '			

References

1. Beauchamp, T. L., & Childress, J. F. (2019). Principles of biomedical ethics. Oxford University

Press.

- 2. Finkelman, L. (2018). Intellectual property and biomedical ethics. Oxford University Press.
- 3. Narayanan, P. (2001). Intellectual Property Laws. Eastern Law House.
- 4. Paul, M. (2009). Intellectual Property Laws. Allahabad Law Agency.
- 5. Resnik, D. B. (2015). Ethical issues in biomedical research: A guide to understanding the causes, course, consequences, and solutions. John Wiley & Sons.
- 6. Smith, J. A., & Johnson, R. B. (2020). Biosafety considerations in gene editing research. Journal of Biotechnology, 15(2), 123-136. doi: 10.1016/j.jbiotec.2020.01.008

SUGGESTED READINGS

- 1. Brown, T. A. (Year). Gene cloning: An Introduction. Chapman and Hall Pub.
- 2. Johnson, N. (2017). Emerging ethical issues in neuroscience. AMA Journal of Ethics, 19(9), 877-884.
- 3. Macklin, R. (2014). Bioethics, public moral argument, and social responsibility. Perspectives in Biology and Medicine, 57(1), 1-17.
- 4. Old, R. W., & Primrose, S. B. (Year). Principles of gene manipulation. Blackwell Scientific Publishers.
- 5. http://www.cbd.int/biosafety/background.shtml
- 6. http://www.cdc.gov/OD/ohs/symp5/jyrtext.htm
- 7. http://www.ipr.co.uk/IP_conventions/patent_cooperation_treaty.html
- 8. http://www.w3.org/IPR/
- 9. http://www.wipo.int/portal/index.html.en
- 10. https://www.wipo.int/treaties/en/registration/budapest/
- 11. www.iprlawindia.org/ 31k
- 12. www.patentoffice.nic.in
- 13. http://web.princeton.edu/sites/ehs/biosafety/biosafetypage/section3.html

Syllabus

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biologica	BSc (Honours) Biological Techniques and Specimen Preparation				
Course Name	PLANT PHYSIOLOGY	PLANT PHYSIOLOGY AND PHYTOCHEMICAL TECHNIQUES				
Type of Course	DCE					
Course Code	MG7DCEBTS400	ANIE				
Course Level	400					
Course Summary	development and its intera	Introduce students to the basics of plant cell its physiology of growth, function, and development and its interaction with environment. Students also acquire skills on the basic phyto-chemical techniques.				
Semester	VII		Credits	RS	4	Total Hours
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practical 0	Others 0	60
Pre- requisites, if		TTA	AN			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains*	PO No
1	CO1: Acquire knowledge on basics on plant cell and its interaction with environment	K,U	2,3,10
2	CO2: To be aware of physiological mechanisms of plant growth, function, and development	An, E	2,3,10
3	CO3: Recognize and describe how plants respond to their environment	U, E	2,3,10
4	CO4: Knowledge and Skills on phytochemical techniques	A, An, S	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	СО
		•	60	No.
		Transport and Translocation of Water and solutes	15	
	1.1	Plant cell: Overview of a plant cell, plant cell organelles, endomembrane systems, cell wall, plant tissues: simple and complex tissues.	5	1
1	1.2	Water and Plant cell: Water potential, Water absorption and transport in plants, transpiration Mineral Nutrition: Essential and Non- essential nutrients, its deficiencies and symptoms, Assimilation of mineral nutrients (N,P,S), Biological nitrogen fixation	5	1,2
	1.3	Solute transport: Passive and active transport, Membrane transport processes and proteins Growth hormones: Auxins, Gibberrellins, Cytokinin, Ethylene, Abscisic acid, Brassinosteroids (discovery, effects, biosynthesis	5	2
2		Plant physiology	15	
	2.1	Photosynthesis: Light reaction, Organisation of photosynthetic apparatus, Light absorbing antenna systems, Mechanism of electron transport and ATP synthesis, Repair and Regulation of photosynthetic machinery	6	2
	2.2	Photosynthesis: Dark reaction, Calvin-Benson cycle and its regulation, C2, C4 and CAM cycle, Accumulation and partitioning of photosynthates, Mobilisation of Starch, Surcose biosynthesis, Sugar translocation in Phloem, Phloem loading and unloading	6	2
	2.3	Respiration: Glycolysis, PPP, citric acid cycle, ETC, Environmental factors that alter Respiration	3	2
2		Secondary metabolites and Plant defense	5	
3	3.1	Introduction, terpenes, phenolic compounds, Nitrogen containing compounds, plant defence against pathogens	5	
		Photo- periodism and photomorph ogenesis, Plant movements and stress physiology	15	3
4	4.2	Photoperiodism in short day and long day plants, Phytochrome induced responses, proteins, signaling pa thways, cryptochrome induced photo-responses in plants	5	
•		Plant movements: Movement of locomotion, Movement of curvature, Hygroscopic movements	2	3
	4.3	Stress physiology: Physiological basis of abiotic stress tolerance, Plants' responses to drought and salinity stress, Escape and tolerance mechanism, Physiological and	8	

	biochemical changes associated with tolerance.		
	Phyto-chemical techniques Methods of Extraction, characterization and purification of secondary metabolites(any one case study)	15	3
5	Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations Teaching aids used-ICT enabled Audio Visual Presentations, Internet Resources Hands on training on phytochemical techniques Industrial visit
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars
	B. End Semester Examinations Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks

References

1. Taiz, L., Zeiger, E., (2010). Plant Physiology. Sinauer Associates Inc., U.S.A. 5th Edition.

MGU-UGP (HONOURS)

- 2. Hopkins, W.G., Huner, N.P., (2009). Introduction to Plant Physiology. John Wiley & Sons, U.S.A. 4th Edition.
- 3. Bajracharya, D., (1999). Experiments in Plant Physiology- A Laboratory Manual. Narosa Publishing House, New Delhi.
- 4. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGrawHill Publishing Co. Ltd. New Delhi. 3rd edition.
- 5. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 6. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation					
Course Name	CANCER BIOLOGY					
Type of Course	DCE					
Course Code	MG7DCEBTS401					
Course Level	400					
Course Summary	By learning Cancer biology the learner will be trained in scientific research methods and learn the techniques used in cell and molecular biology and pathology. Student will study the biology of disease, tumour biology, immunology, molecular oncology, haematological malignancy, plus diagnostic and therapeutic techniques for cancer.					
Semester	VIII		Credits		4	
Course Details	Learning Approach	Lecture 4	Tutorial 0	Practical 0	Others 0	Total Hours 60
Pre-requisites, if any	विद्यम उ	अतस	35.A		ı	ı

COURSE OUTCOMES (CO)

Interest(I) and Appreciation(Ap)

CO No.	Expected Course Outcome (HONOURS)	Learning Domains *	PO No		
1	Comprehend the basics of cancer and identify with the concept of cancer as a disease and the process of carcinogenesis	U	2		
2	Perform the basic and the advanced molecular techniques used in cancer diagnostics and interpret the results.	U, A	2		
3	Choose advanced studies in the field of oncology	U	2,3,9,10		
4	Make objective decisions about the harmful effects of cancer causing agents and create awareness about them among the common man	U,A	2,3,9,10		
5	Demonstrate core knowledge of the cellular targets and molecular mechanisms of traditional and novel cancer therapies.	U,A	2,3,9,10		
*Rem	*Remember(K), Understand (U), Apply(A), Analyse (An), Evaluate(E), Create(C), Skill(S),				

COURSE CONTENTContent for Class room transaction (Units)

Module	Units	Course description		CO No.
		Fundamentals of cancer biology:	15	
	1.1	Introduction to Cancer Biology, Tumor suppressor genes, modulation of cell cycle in cancer,	5	1
1	1.2	Different forms of cancers	4	
	1.3	Cancer screening and early detection, Detection using biochemical assays, tumor markers, molecular tools for early diagnosis of cancer	6	2,3
		Principles of carcinogenesis:	15	
2	2.1	Theory of Carcinogenesis: Chemical carcinogenesis, principles of physical carcinogenesis,	6	2,3,4
	2.2	X-ray radiation-mechanisms of radiation carcinogenesis,	5	2,3,4
	2.3	Diet and cancer.	4	2,3,4
		Principles of molecular cell biology of cancer:	15	2,3,4
	3.1	Signal targets and cancer, activation of kinases;	3	2,3,4
3	3.2	Oncogenes, identification of oncogenes, retroviruses and oncogenes	4	2,3,4
	3.3	Oncogenes/proto oncogene activity,	4	5
	3.4	Growth factors related to transformation, Telomerases	4	5
		Principles of cancer metastasis:	15	5
	4.1	Clinical significances of invasion	2	5
	4.2	Metastatic cascade	2	5
4	4.3	Basement membrane disruption, proteinase and tumor cell invasion.	3	5
	4.4	New molecules for cancer therapy: Different forms of therapy, chemotherapy, radiation therapy, detection of cancers, prediction of aggressiveness of cancer,	4	5
	4.5	Advances in cancer detection.	4	5
5		Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, ICT enabled classes, Group discussions, seminar presentations and activities
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory Total=30marks Quiz/ Test Papers/ Seminar/ Activity Report (on behavioral study)
	B. Semester End examination Theory Total 70 marks, Duration 2 hrs Short Essays 8 out of 10 x 4=32 Marks, short questions-14 out of 16 x2=28 Marks, Fill in the blanks -1x10=10 Marks

REFERENCES

- 1. Cassimeris, L., Viswanath R. Lingappa, & Plopper Jones, G. (Eds.). (2011). Lewin's Cells. London: Bartlett Publishers.
- 2. Clark, D. P., & Pazdernik, N. J. (2009). Biotechnology- Applying genetic revolution. New York: Elsevier.
- 3. Cooper, G. M., & Hausman, R. E. (Eds.). (2000). The Cell A molecular Approach. Washington: ASM Press.
- 4. Dunmock, N. J., & Primrose, S. B. (2001). Introduction to Modern Virology. Oxford: Blackwell Scientific Publications.
- 5. Maly, B. W. J. (1985). Virology A Practical Approach. Oxford: IRL Press.
- 6. Weinberg, R. A. (2013). The Biology of Cancer. New York, NY: Garland Science.

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honors) Biological Techniquesand Specimen Preparation			
Course Name	CLINICAL RESEARCH AND PHARMACOVIGILANCE			
Type of Course	DCE			
Course Code	MG7DCEBTS402			
Course Level	400 GANDA			
Course Summary	The introductory course provides a comprehensive overview of the key concepts and practices in clinical research and pharmacovigilance. It covers the basics of designing and conducting clinical trials, understanding ethical considerations in research, monitoring and reporting adverse drug reactions. Students will also learn about the regulatory requirements for drug development and post-marketing surveillance. The importance of pharmacovigilance in ensuring drug safety and the effectiveness in communicating and collaborating with healthcare professionals and regulatory agencies are learned.			
Semester	VII	Credits 4	Total	
Course	Learning	Lecture Tutorial Practical Others	Hours	
Details	Approach	4 0 0 0		
	/1व	ग्रथा अस्त्रसङ्ग्रत् 🛝	60	
1 /	None			
if any				

COURSE OUTCOMES (CO) (HONOURS)

Interest(I) and Appreciation(Ap)

CO No.	Expected Course Outcome	Learning Domains *	PO No	
1	To observe understand and evaluate research communications	U,E	2,3,10	
2	To understand the basic principles and ethical considerations of clinical research.	U,K	2,3,10	
3	To evaluate clinical research studies and assess the validity of their findings.	U,A	2,3,10	
4	To gain familiarity with the various stages of drug development	U,K	2,3,10	
5	To understand the adverse effects of medicine on a patient through clinical research and pharmacogenomics	U,E	2,3,10	
6	To gain knowledge of the regulatory requirements and guidelines governing clinical research and pharmacovigilance.	K,An	2,3,10	
*Reme	*Remember(K), $Understand(U)$, $Apply(A)$, $Analyse(An)$, $Evaluate(E)$, $Create(C)$, $Skill(S)$			

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Coursedescription	Hrs	CO
			60	No.
1	1.1	Overview of research methods. Planning a research project, Literature searching and systematic reviews. Quantitative and qualitative research methods,	5	1
	1.2	Understanding datacollection and analysis, critical appraisal of published research articles. Presentation skills(written and oral).	5	1
	1.3	Sponsor's Perspective: Managing a Clinical Trial, Selecting Investigators and Monitors Maintaining and Managing Essential Documents (e.g. FDA Form 1572); Case Report Form Data. Transmission and Generation of the Clinical Study Report.	5	1,2
	2.1	Overview of Medicinal Product Research and Development Drug Discovery and Pre- Clinical Research	5	2,3
2	2.2	The Clinical Research and New Drug Application Approval Process; the Biologics Research, Development, and Licensing Process; Medical Device Research, Development, and Marketing.	5	2,3
	2.3	Drug Development Processes: History of drug development, Discovery and selection of compounds for human investigation and toxicological requirements.	5	4
3	3.1	Pharmacokinetics and pharmacodynamics,	5	4,5
	3.2	Pharmacogenomics and its application in clinical research.	5	4,5
	4.1	Regulatory Affairs and Pharmacovigilance, Regulatory requirements in Europe, the USA and Japan, Regulatory requirements for biotechnology products, medicinal devices and veterinary products	5	6
4	4.2	Regulatory requirements for the preparation, packaging, labeling andstorage of clinical trial drugs,	5	6
	4.3	Health economics; Pharmacoeconomics and quality of life assessment, Safety reporting. Methods of monitoring drug safety, responding to drug safety alerts, Post marketing surveillance.	5	5,6
5		Teacher Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations Teaching aids used- ICT enabled Audio Visual Presentations, Internet Resources
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 30 marks Test Papers/Assignments/Seminars
	B. End Semester Examinations Theory Total = 70 marks (Duration 2 hrs) Short essays (8 out of 10) X 4= 32 marks Short Questions (14 out of 16) X 2= 28 marks Multiple Choice Questions (1X 10) = 10 marks

- 1. Brown, A. M., & Wilson, P. (2016). Introduction to pharmacovigilance: Principles and practice. American Psychological Association.
- 2. Davis, J. M., & Wilson, R. (2016). Principles and practice of pharmacovigilance in clinical research. American Psychological Association.
- 3. Johnson, R. F., & Smith, L. K. (2017). Pharmacogenomics: An introduction and clinical perspective. American Psychological Association.
- 4. Jones, L. R., & Patel, S. (2018). Clinical research methods in pharmacogenomics. American Psychological Association.
- 5. Kothari, C. R. (2004). Research methodology: Methods and techniques (2nd ed.). New Age International (P) Ltd.
- 6. Kumar, R. (2014). Research methodology: A step-by-step guide for beginners (4th ed.). SAGE Publications India.
- 7. Patel, K. M., & Johnson, T. (2019). Pharmacovigilance: Principles and practice. American Psychological Association.
- 8. Smith, J. R., & Davis, M. (Eds.). (2018). Clinical research in pharmacogenomics: Methods and applications. American Psychological Association.

9. Brown, S. D., & Jones, T. (Eds.). (2015). Handbook of clinical research methods and applications. American Psychological Association.

SUGGESTEDREADINGS

- 1. Innocenti, F. (2005). Pharmacogenomics: Methods and Applications. Medical.
- 2. Johnson, A. L., & Smith, P. (2019). Pharmacogenomics and drug development: An introduction. American Psychological Association.
- 3. Patel, R. S., & Brown, M. (2018). Pharmacovigilance in clinical research: Principles and practice. American Psychological Association.
- 4. Rychlik, R. (2002). Strategies in Pharmacoeconomics and Outcomes Research. Medical.
- 5. Smith, K. T., & Johnson, L. (2017). Pharmacogenomics and personalized medicine: Methods and applications. American Psychological Association.
- 6. Vogenberg, F. R. (2000). Introduction to Applied Pharmacoeconomics. Medical.

MGU-UGP (HONOURS)

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biologica	al Techniques and Specimen	Preparation	
Course Name	STRESS PHYSIOLOGY			
Type of Course	DCE			
Course Code	MG7DCEBTS403			
Course Level	400	HADAI		
Course Summary	animals use to respond responses to different the health and disease. This responses of plants and	n in-depth exploration of the to stress. It covers the cellular ypes of stressors and examin a course also explores the phymicrobes to various biotic and and systemic adaptations that der stress conditions.	r, systemic, and es the impact o siological mecha l abiotic stressor	behavioral f stress on anisms and s. It covers
Semester	VII	Credits	4	Total
Course	Learning Approach	Lecture Tutorial Practi		Hours
Details		4 0 0	0	60
Pre- requisites, if any	विस्था	यस्यस्य विशेष		

COURSE OUTCOMES (CO)

CO No.	MGU-UGP (HONOUR Expected Course Outcome	Learning Domains *	PO No
1	Understand the fundamental principles of stress physiology in animals, plants and microbes	U	2,3,10
2	Able to learn about the molecular and cellular mechanisms underlying stress responses.	U	2,3,10
3	Analyze physiological adaptations to various stressors in animals ,plant and microbes	An	2,3,10
4	Evaluate strategies used by organisms to cope with and adapt to stress.	Е	2,3,10
5	Evaluate the applications of stress research in biotechnology and environmental management.	Е	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs. 60	CO No.
	1.1	Introduction to Stress Physiology Definition and Types of stress. Historical perspectives on stress research. Concepts of homeostasis and allostasis in animal physiology. stress response mechanism,	3	1
1	1.2	Neuroendocrine Basis of Stress Structure and function of the hypothalamic- pituitary-adrenal (HPA) axis. Role of glucocorticoids and catecholamines in stress response. Acute vs. chronic stress responses.	10	3
2	2.1	Cellular and Molecular Mechanisms Signal transduction pathways in stress response. Role of heat shock proteins and stress proteins. Mechanisms of apoptosis and cell survival during stress.	10	2
	2.2	Environmental Stressors: Physiological responses to temperature, hypoxia, and pollution. Human Impact on Animal Stress, Stress and Animal Welfare	4	2,3
3	3.1	Stress physiology in plants — Definition and types of plant stress. Responses of plants to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses. Signal Transduction in Plant Stress Responses-Perception of stress signals. Signal transduction pathways: (receptors, second messengers, and transcription factors.) Role of phyto-hormones in stress signaling.	15	3
	3.2	Agricultural Implications of Plant Stress: Impact of stress on crop yield and quality. Breeding and biotechnological approaches to improve stress tolerance. Management practices to mitigate stress in agricultural systems	8	1,2,4
4	4.1	Microbial stress physiology: Definition and types of stress in microorganisms. Signal Transduction Pathways in Microbial Stress Responses, Applications of Microbial Stress Physiology	10	1,4

5	Teacher specific Module	

	Classroom Procedure (Mode of transaction)
Teaching	Classroom lectures
and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
Learning	interactive Instruction:, Active co-operative learning, Seminar, Group
Approach	Assignments Authentic learning, , Library work and Group discussion,
	Presentation by individual student/ Group representative
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory Total=25 marks
	Quiz/ Test Papers/ seminars
	B. End Semester Examination
	Theory Total 70 marks, Duration 2 hrs
	Short Essays 8 out of 10 x 4=32 Marks,
	Short questions-14 out of 16 x2=28 Marks,
	Multiple choice questions-1x10=10 Marks

- 1. Blum, A. (2011). Plant breeding for water-limited environments. Springer.
- 2. Broom, D. M., & Johnson, K. G. (1993). Stress and animal welfare. Chapman & Hall.
- 3. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants (2nd ed.). Wiley Blackwell.
- 4. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30(3), 239-264.
- 5. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374-381.
- 6. Cockrem, J. F. (2007). Stress, corticosterone responses and avian personalities. Journal of Ornithology, 148(2), 169-178.
- 7. Debnath, B. C., & Chatterjee, P. N. (2015). Impact of heat stress on dairy animal health and milk production: A review. Journal of Animal Research, 5(2), 183-193.
- 8. Fink, G. (Ed.). (2010). Stress science: Neuroendocrinology. Academic Press.
- 9. Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.

- 10. Gupta, S., & Earley, B. (2020). Stress physiology of farm animals: A comprehensive review. Indian Journal of Animal Sciences, 90(2), 123-133.
- 11. Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology (3rd ed.). Cambridge University Press.
- 12. Kishore, K., Das, T. K., & Mohanty, T. K. (2011). Effect of environmental stress on reproductive performance of dairy cows: A review. Indian Journal of Animal Sciences, 81(3), 236-243.
- 13. Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459-493.
- Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M.,
 & Richter-Levin, G. (2011). Stress revisited: A critical evaluation of the stress concept.
 Neuroscience & Biobehavioral Reviews, 35(5), 1291-1301.
- 15. Lambers, H., Chapin, F. S., III, & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). Springer.
- 16. Malik, P. K., Singh, R. K., & Kumar, A. (2018). Heat stress in livestock: Impact and ameliorative strategies. Journal of Animal Research, 8(2), 211-226.
- 17. Moberg, G. P., & Mench, J. A. (Eds.). (2000). The biology of animal stress: Basic principles and implications for animal welfare. CABI Publishing.
- 18. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
- 19. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants

 A review. Plant Soil and Environment, 54(3), 89-99.
- 20. Reddy, P. R. K., & Sivakumar, A. V. N. (2011). Oxidative stress and antioxidants in dairy cattle. Indian Journal of Dairy Science, 64(3), 223-230.
- 21. Sapolsky, R. M. (2004). Why zebras don't get ulcers: The acclaimed guide to stress, stress-related diseases, and coping (3rd ed.). Holt Paperbacks.
- 22. Sharma, A., & Kataria, N. (2010). Biomarkers for heat stress in camel. Journal of Stress Physiology & Biochemistry, 6(2), 38-44.
- 23. Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates.
- 24. Wingfield, J. C., & Kitaysky, A. S. (2002). Endocrine responses to unpredictable environmental events: Stress or anti-stress hormones? Integrative and Comparative Biology, 42(3), 600-609.

Mahatma Gandhi University Kottayam

Programme	BSc (Honors) Biological Techniques and Specimen Preparation			
Course Name	TOXICOLOGY STUDIES AND TECHNIQUES			
Type of Course	DCE			
Course Code	MG7DCEBTS404			
Course Level	400 GANA			
Course Summary	This course offers a comprehensive introduction to the field of toxicold on the principles, methodologies, and applications of toxicological stud the mechanisms of toxicity, the assessment of chemical hazards, and the toxic effects on biological systems. Students will gain hands-on exp various techniques used in toxicological research and learn to apply thes assess the impact of toxicants on human health and the environment.	ies. It covers evaluation of perience with		
Semester	VII Credits 4	Total		
Course Details	Learning ApproachLectureTutorialPracticalOthers4000	Hours 60		
Pre- requisites, if any		00		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome (HONOURS)	Learning Domain*	PO No
1	Understand the fundamental principles of toxicology, including dose-response relationships and mechanisms of toxicity	U	2,3,10
2	Learn about the various classes of toxicants and their sources, including environmental pollutants, and industrial chemicals,	U	2,3,10
3	Gain proficiency in the techniques and methodologies used in toxicological research, including in vitro and in vivo testing, biomonitoring, and risk assessment.	R	2,3,10
4	Develop skills in analyzing toxicological data and interpreting results within a regulatory and public health context.	S	2,3,10
5	Explore current issues and advancements in toxicology, including emerging contaminants and novel testing methods.	С	2,3,10

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs.	CO
			60	No.
1	1.1	Principles of Toxicology: Introduction, definition, brief history, scope and sub-divisions of toxicology, Classification of toxins, natural toxins, animal toxins, plant toxins, food toxins, genetic poisons and chemical toxins Basic concepts-Dose and dose response, type of toxic effect (allergic reactions, idiosyncratic ic reactions, reversible and irreverible effects, acute toxicity, sub-acute toxicity, sub-chronic effects and Cronic effects)Factors affecting toxicity-Species and strain, age, sex, nutritional status, hormones, circadian rhythms and environmental factors	10	1
	1.2	Environmental Toxicology: Air pollution- Classification and properties of air pollutants, Behaviour and fate of air pollutants, photochemical smog acid rain, health effect of air pollutan in man.	5	2
	1.3	Water pollution- Origin of Wastewater, Types of water pollution(domestic, Industrial, agricultural, solid waste, thermal and oil pollution) Toxic water pollutants and their heaith effects, ground water pollution, health effects of marine pollution, case studies.	5	1,2
	1.4	Radioactive pollution- Sources of radioactive pollution, health effects of radiation. famous incidents of radioactive pollution	5	1,2
	2.1	Systemic Toxicology: cutaneous toxicity- Skin as a barrier against toxins, dermatitis (initant dennatitis, allergic (initant dennatitis, allergic dennatitis, chemical) bums), pigmeutry disturbances, phototoxicity, skin cancer by radiation, arsenic and PAH	5	2,3
2	2.2	Hepatotoxicity- mechanism of liver injury, case studies pertaining to carbon tetrachloride and acetaminophen, types of liver injury (fatty liver, , bile duct damage, sinusoidal damage, liver cell death- necrosis and cirrhosis, Liver tumors)Renal toxicity- mechanisms of renal injury, specific nephrotoxins (heavy metals, halogenated hydrocarbons, therapeutic agents), nephropathy.	10	2

	3.1	Occupational and Industrial Toxicology: Occupational hazards- physical, chemical, biological and mechanical hazards.	10	2,3
		Occupational diseases: Pneumoconiosis, Silicosis, Asbestosis, Anthracosis.		
		Prevention in different environments – Home, Workplace, Pollution of Air, Water and Land.		
		Occupational Cancer – Skin cancer, Lung cancer, Bladder cancer and Leukemia;		
		Prevention of Occupational diseases. Industrial toxicology – history and basic features,		
		Industrial hygiene, Risk assessment and Management of industrial chemicals.		
		Introduction, Legislation and Regulation – Federal government, State government, Legislation and		
3		Regulation in other countries.		
	4.1	Techniques: Bioassays, phototoxicity, comet assay, modified Salmonella assay, transgenic bioassays, neonatal bioassays	15	3,4,5
4		Invitro bioassays: Predictive and mechanistic toxicology, different cell lines their use and Limitations		
		Chromatography(gas and liquid chromatography) Mass spectrometry, spectroscopy(UV-visible spectroscopy, infrared spectroscopy, NMR, HPLC,		
		Toxicogenomics		
5		Teachers Specific Module		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Classroom lectures Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative
	MODE OF ASSESSMENT
Assessment	
Types	A. Continuous Comprehensive Assessment (CCA)
	Theory Total=25 marks
	Quiz/ Test Papers/ seminars
	B. End Semester Examination
	Theory Total 70 marks, Duration 2 hrs
	Short Essays 8 out of 10 x 4=32 Marks,
	Short questions-14 out of 16 x2=28 Marks,
	Multiple choice questions-1x10=10 Marks

REFERENCES

- 1. Agarwal, A., & Gopal, K. (2010). Principles of toxicology. ibdc publishers India.
- 2. Cockerham, L. G., & Shane, B. S. (Eds.). (n.d.). Basic environmental toxicology. CRC Press, London.
- 3. Goldfrank, L. R., Flomenbaum, N. E., Lewin, N. A., Howland, M. A., Hoffman, R. S., & Nelson, L. S. (2006). Goldfrank's toxicologic emergencies (8th ed.). McGraw-Hill.
- 4. Gupta, P. K., Salunkha, & Gupta, B. V. (Eds.). (n.d.). Modern toxicology (3 volumes). B V Gupta Metropolitan Book Co., Pvt Ltd, New Delhi.
- 5. Haley, T. J., & Berndt, W. O. (Eds.). (n.d.). Handbook of toxicology. Hemisphere Publishing Corporation, Washington.
- 6. Hayes, A. W. (Ed.). (2007). Principles and methods of toxicology (5th ed.). CRC Press.
- 7. Hodgson, E., & Levi, P. (2000). Textbook of modern toxicology. McGraw-Hill International Edition, Singapore.
- 8. Jatimbrell. (n.d.). Principles of biochemical toxicology. Taylor and Francis Ltd, London.
- 9. Jasra, O. P. (n.d.). Encyclopedia of toxicology.
- 10. Landis, W. G., & Yu, M. H. (2003). Introduction to environmental toxicology (3rd ed.). Lewis Publishers, Florida.
- 11. Matham, V. K. (2011). Essentials of toxicology. New India Publishing Agency, New Delhi.
- 12. Walker, C. H., Hopkin, S. P., Sibly, R. N., & Peakall, D. B. (Eds.). (2006). Principles of ecotoxicology (3rd ed.). Taylor and Francis, New York, NY.

MGU-UGP (HONOURS)

MGU-UGP (HONOURS)

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation								
Course Name	OMICS APPROACHES IN BIOTECHNOLOGY								
Type of Course	DCC								
Course Code	MG8DCCBTS400								
Course Level	400 GA	NOF							
Course Summary	Omics approaches aim to ensure that students not only acquire theoretical knowledge but also gain practical skills and a broader understanding of the implications of omics approaches in the biotechnology landscape. The course should prepare them to contribute to cutting-edge research, address complex biological questions, and navigate the ethical and practical challenges associated with omics technologies.								
Semester	VIII		Credits		4				
Course Details	Learning Approach Lecture Tutorial Practical Others Hours 3 0 1 0 75								
Pre- requisites, if any	Student with good knowled	ge and inte	rest of Micr	obiology and	genetics.				

COURSE OUTCOMES (CO)

MGU-UGP (HONOURS Learning CO Domains* PO No **Expected Course Outcome** No. IJ Demonstrate a comprehensive understanding of genomics, 1 transcriptomics, proteomics, metabolomics, and other omics approaches. 2 Acquire proficiency in the use of high-throughput technologies U, S 2,3,9,10 such as next-generation sequencing, microarray analysis, and mass spectrometry. 3 Develop the ability to critically interpret omics data and draw IJ meaningful biological conclusions. Understand how to integrate data from multiple omics U 4 2,3,9,10 technologies to gain a holistic view of biological systems Explore and evaluate the applications of omics approaches in U,A,E 2,3,9,10 various biotechnological fields, including medicine, agriculture, and environmental science.

6	Acquire practical skills in generating omics data through	U,A,S	2,3,9,10
	laboratory techniques and gain proficiency in bioinformatics		
	tools for the analysis and interpretation of large-scale omics		
	datasets.		
7.	Apply omics approaches to address biological research questions, including the design and execution of experiments, and the interpretation of results.	U,A,S	2,3,9,10
	and the interpretation of results.		

^{*}Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
		Introduction, scope and applications to Omics Technologies	5	
	1.1	Overview of Omics: Introduction to genomics, transcriptomics, proteomics, metabolomics, and other omics fields	2	1
1	1.2	High-throughput Technologies: Understanding microarray technology, next-generation sequencing (NGS), mass spectrometry, and other high-throughput methods.	3	2,3
	1.3	Applications of Omics in Biotechnology Medical Biotechnology: Omics approaches in personalized medicine, disease diagnostics, and drug discovery. Environmental Biotechnology: Applications in environmental monitoring and remediation. Agricultural Biotechnology: Omics in crop improvement and agriculture.	10	4,5
		Genomics J_UGP (HONOURS)	10	
	2.1	Genome Sequencing: Principles and applications of wholegenome sequencing, shotgun sequencing, and bioinformatics tools for genome analysis.	6	4
2	2.2	Functional Genomics: Study of gene function, RNA interference (RNAi), and CRISPR/Cas9 technology.	4	3,4
		Transcriptomics	8	
	2.3	RNA Sequencing (RNA-Seq): Principles, experimental design, and data analysis for transcriptome profiling.	4	5
	2.4	Microarray Analysis: Introduction to microarray technology for gene expression studies	4	2,6,7
		Proteomics and Metabolomics	12	
3	31	Mass Spectrometry: Principles of mass spectrometry for protein identification and quantification.	2	2,6

	3.2	2D Gel Electrophoresis: Techniques for separating and analyzing proteins	4	6,7
	3.3	3	3,4,6	
	3.4	Metabolic Pathway Analysis: Understanding metabolic pathways and their regulation.	3	3,4,6
		PRACTICALS	30	
4	4.1	 Database mining of resources in OMICS - SRA, STRING, METACyc, UNIPROT, BIOGRID etc. Analysis of Mnase Sequence data. 13. ATAC- Sequence data analysis. DGE data plotting - PCA plot, T-SNE plot etc. Analysis of Metagenomics NGS data. Preparation of report based on -Databases and data repositories used in systems Biology 		1,2,3,4,5
	5	Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)					
and	Lectures, ICT enabled classes, Group discussions,					
Learning	assignments, seminar presentations and activities					
Approach	Note: Teaching aids like softwares, models, videos related to the topic may be used.					
	MODE OF ASSESSMENT					
	Continuous Comprehensive Assessment (CCA) Theory Total=25					
	marks Quiz/ Test Papers/ assignments/seminars					
Assessment Types	Practical Total 15 marks: Lab performance/ record/ report/ case studies					
	B. End Semester examination Theory Total 50 marks, Duration 1.5 hrs Short Essays 5 out of 7x4=20 marks Short questions-10 out of 12x2=20 marks Fill in the blanks -1x10=10 marks					
	Practicals Total 35 marks Duration- 2 hrs					
	Record 10 marks, Examination 25 marks: Sequence analysis, use of databases 20 marks, Viva-5 marks					

- 1. Brown, T. A. (2023). Genomes 5.
- 2. Choudhuri, S. (2014). Bioinformatics for beginners: genes, genomes, molecular evolution, databases and analytical tools. Elsevier.
- 3. Lesk, A. M. (2017). Introduction to genomics. Oxford University Press.
- 4. Muller, U. R., & Nicolau, D. V. (Eds.). (2005). Microarray technology and its applications (pp. 73-77). Berlin: Springer.
- 5. Palsson, B. (2015). Systems biology. Cambridge university press.
- 6. Pennington, S. R., & Dunn, M. J. (2001). Proteomics: from protein sequence to function.
- 7. Pennington, S. R., & Dunn, M. J. (2001). Proteomics: from protein sequence to function.
- 8. Streit, W. R., & Daniel, R. (2017). Metagenomics. Springer New York.
- 9. Wang, D. (2017). Systems Biology: Constraint-Based Reconstruction and Analysis
- 10. Weckwerth, W. (Ed.). (2008). Metabolomics: methods and protocols (Vol. 358). Springer Science & Business Media.

SUGGESTED READINGS

- 1. Boyle, J. (2007). Proteomics for Biological Discovery, by Timothy D. Veenstra and John R. Yates. Biochemistry and Molecular Biology Education, 35(3), 227-227.
- 2. Cantor, C. R., & Smith, C. L. (2004). Genomics: the science and technology behind the human genome project. John Wiley & Sons.
- 3. Carrera, M., & Mateos, J. (2021). Shotgun Proteomics (pp. 215-223). New York, NY, USA Springer.
 - 4. Craig, J., & Wong, N. C. (2011). Epigenetics: a reference manual.
 - 5. Klipp, E., Liebermeister, W., Wierling, C., & Kowald, A. (2016). Systems biology: a textbook. John Wiley & Sons.
- 6. Kumar, D. (2007). From evidence-based medicine to genomic medicine. Genomic medicine, 1(3-4), 95-104.
- 7. Mishra, N. C. (2011). Introduction to proteomics: principles and applications. John Wiley & Sons.
- 8. Samuelsson, T. (2012). Genomics and bioinformatics: an introduction to programming tools for life scientists. Cambridge University Press.
- 9. Snustad, D. P., & Simmons, M. J. (2015). Principles of genetics. John Wiley & Sons.
- 10. Twyman, R. (2004). Principles of proteomics. Taylor & Francis.
- 11. Westermeier, R., & Naven, T. (2002). Proteomics in practice: a laboratory manual of

proteome analysis.

MGU-UGP (HONOURS)

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological Techniques and Specimen Preparation								
Course Name	MICROBIAL BIOTECHN	OLOGY							
Type of Course	DCC	DCC							
Course Code	MG8DSCBTS401	ND							
CourseL evel	400	400 GAND							
Course Summary	The course will enable students to apply the learning of Biotechnology concepts towards the exploitation of microbial population for industrial and human benefits. The students are trained in: Screening for microbial strains from different samples. To prepare and sensitize the students to scope for research, the increasing for skilled scientific manpower with an understanding of research, industrials applications and microbiology ethics.								
Semester	VIII	VIII Credits 4 Total Hours							
Course	Learning Approach	Lecture Tutorial	Practical	Others	Tiouis				
Details		3 0	1	0	75				
Pre- requisites, if any	Student with basic knowled	ge and interest of Mi	crobiology and	Biotechnol	ogy.				

COURSE OUTCOMES (CO)

SE OUTCOMES (CO)		
Expected Course Outcome	Learning Domains*	PO No
Developing an understanding about the concept, importance and scope of Microbial Biotechnology.	U	2,3,9,10
Empower students with knowledge on Microbial products by highlighting the roles and characteristics of microorganisms in field of Biotechnology	U, A,S	2,3,9,10
Giving insight on Fermentation process	U	2,3,9,10
Helps students to know the beneficial role of microorganisms in bioprocessing of different types of fermented products	U,A	2,3,9,10
Students learn the production of recombinant proteins, vaccines, and biopharmaceuticals by genetic engineering and fermentation processes	U,A	2,3,9,10
Helps students to know the different microorganisms and their products (enzymes, polymers, metabolites, etc.) that are used in the biotechnology industry.	U,A, S	2,3,9,10
	Expected Course Outcome Developing an understanding about the concept, importance and scope of Microbial Biotechnology. Empower students with knowledge on Microbial products by highlighting the roles and characteristics of microorganisms in field of Biotechnology Giving insight on Fermentation process Helps students to know the beneficial role of microorganisms in bioprocessing of different types of fermented products Students learn the production of recombinant proteins, vaccines, and biopharmaceuticals by genetic engineering and fermentation processes Helps students to know the different microorganisms and their products (enzymes, polymers, metabolites, etc.) that are used in the	Expected Course Outcome Developing an understanding about the concept, importance and scope of Microbial Biotechnology. Empower students with knowledge on Microbial products by highlighting the roles and characteristics of microorganisms in field of Biotechnology Giving insight on Fermentation process U Helps students to know the beneficial role of microorganisms in bioprocessing of different types of fermented products Students learn the production of recombinant proteins, vaccines, and biopharmaceuticals by genetic engineering and fermentation processes Helps students to know the different microorganisms and their products (enzymes, polymers, metabolites, etc.) that are used in the

COURSE CONTENT

Content for Class room transaction (Units)

Module	Unit	Course description	Hrs 45	CO No.
		Overview of Microbial Biotechnology	10	
1	1.1	Historical perspectives, Scope and applications.	2	1
1	1.2	Isolation, preservation and maintenance of industrially important microbes	4	
	1.3	Methods of Strain improvement and selection.	4	2,3
		Application of Microbes in Agriculture and environment	12	
	2.1	Bio-fertilizers - Mass inoculum production of Rhizobium, Azospirillum, Azotobacter.	2	2,3,4
	2.2	Mycorrhizal inoculants, Blue green algae, Azolla, bioinsecticides, biopesticides,	2	2,3,4
2	2.5	Abiotic stress tolerant plants – drought, flooding, salt and temperature.	2	2,3,4
	2.4	Biotic stress resistant to insects, fungi, bacteria, viruses, weeds	1	2,3,4
	2.5	Bioremediation of hydrocarbons and xenobiotic compounds, <i>In situ</i> and <i>ex-situ</i> bioremediation.	1	2,3,4
	2.6	Biodegradation, Bioleaching, Biomining, Biopaints, Bioantifouling agents, Bioelectricity, Biodetergents, Biopolymers, Biocement and Bioplastics	4	2,3,4
3		Application of Microbial Biotechnology in Medicine	8	
	3.1	Recombinant proteins, vaccines, antibiotics, hormones, interferons, lycopene (pigment) and melanin	5	5
	3.2	Microbial biosensors	1	5
	3.3	Bioweapons	2	5
		Industrial Microbial Biotechnology	15	
	3.4	Industrial production of Primary metabolites and secondary metabolites-shikimic acid	2	6
	3.5	Production of alcohol, acetone- butanol, citric acid, acetic acid, lactic acid.	4	6
	3.6	Production of Antibiotics- penicillin, streptomycin,	2	6
	3.7	Microbial production of enzymes- amylase, protease, cellulase.	2	6
		PRACTICAL	30	
	4.1	Design and Preparation of Media for Bioprocesses Section 1, Design and Preparation of Media for Bioprocesses Section 2, Isolation of industrially important microorganism from		1,2,3, 4,5,6

	different sources using specific substrates
	3, Preservation and maintenance of microbial cultures –
	Refrigeration, Mineral Oil layer, glycerol stocks
4	4. Immobilization of microbial cells by calcium alginate gel entrapment
	5. Solid state fermentation of some microbial products
	6.Demonstration of wide diversity of microbes and their potential for use in microbial biotechnology
	7. Cultivation and mass multiplication of Azolla
	(Demonstration)
5	Teacher Specific Module

Teaching and	Classroom Procedure (Mode of transaction)							
Learning and	Module 1: Lectures, ICT enabled classes, Group discussions, seminar							
Approach	presentations and activities							
прртоцен								
	A visit to educational institute/university/industry to see an industrial							
	fermenter, cultivation process and other downstream processing							
	operations.							
	TAY Po							
	MODE OF ASSESSMENT							
	A. Continuous Comprehensive Assessment (CCA)							
	Theory Total=25 marks							
	Quiz/ Test Papers/ seminars/ assignment							
Assessment Types	D 4 177 4 147 1							
	Practical Total 15 marks							
	Lab performance/ record/ industry visit report							
	B. End Semester examination							
	Theory Total 50 marks, Duration 1.5 hrs							
	Short Essays 5 out of 7x4=20 marks							
	Short questions-10 out of 12x2=20 marks							
	Fill in the blanks -1x10=10 marks							
	Practicals Total 35 marks Duration- 2 hrs							
	Record 10 marks,							
	Examination 25 marks: Performance of experiments 15 marks							
	Viva-5 marks, research institute visit report- 5 marks							

- 1. Atlas, R., & Bartha, R. (Eds.). (2013). Microbial Ecology: Fundamentals and Applications. Pearson Education, Benjamin Cummings Publishing Company.
- 2. Cassida, L. E. (1968). Industrial Microbiology. John Wiley and Sons Publishers.

- 3. Forster, C. F., & Wase, D. J. (1987). Environmental Biotechnology. Ellis Harwood.
- 4. Jayaraj, S. (Ed.). (1985). Microbial control and pest management.
- 5. Mansi, E. M. T., Bryce, C. F. A., Dmain, A. L., & Alliman, A. R. (2009). Fermentation Microbiology and Biotechnology. Taylor and Francis.
- 6. Mor. Young, M. (Ed.). (2011). Comprehensive Biotechnology (2nd ed.). Elsevier.
- 7. Prescott, Lansing, & Klein, John. (2002). Microbiology. Wiley Publications.
- 8. Rangaswami, G., & Bagyaraj, D. J. (1998). Agricultural Microbiology II edition published by Prentice Hall of India Pvt. *Ltd. N. Delhi*.
- 9. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of Fermentation Technology. Elsevier.

SUGGESTED READINGS

- 1. Funke. (1995). Study Guide for Microbiology (5th Ed.). Benjamin/Cummings Publishing Company, Redwood City, CA.
- 2. Lee, Y. K. (2003). Microbial Biotechnology: Principles and applications. World Scientific Publisher.
- 3. Tortora, Funke, Case. (1995). Microbiology, An Introduction (5th Ed.). Benjamin/Cummings Publishing Company, Redwood City, CA.

विद्या अस्तमञ्जूते

MGU-UGP (HONOURS)

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biolo	gical Tech	niques and	l Specimen I	Preparation		
Course Name	PLANT BIOTECHNO	OLOGY					
Type of Course	DCE						
Course Code	MG8DSEBTS400						
Course Level	400	GAN					
Course Summary	culture and transgen and applications of study about plant ce	This course in biotechnology describes with the micro propagation plant cell culture and transgenesis of plants Based on the knowledge of vectors, enzymes and applications of transgenesis gained in previous semesters, the learner will study about plant cell, tissue and organ culture, micro propagation, transgenic plant development and applications					
Semester	VIII		Credits	18/	4	Total	
Course	LearningApproach	Lecture	Tutorial	Practical	Others	Hours	
Details	विद्याय	314	HAR AND	1	0	75	
Pre- requisites, if any	Basic knowledge in p	lant tissue	culture and	genetic engir	neering	·	

COURSE OUTCOMES (CO)GU-UGP (HONOURS)

CO No.	ExpectedCourseOutcome	Learning Domain*	PO No
1	To understand and compare the traditional and biotechnological methods of plant improvement.	U,K	2,3,10
2	To learn the development of newvariety and hybrid plants through plant cell culture.	U,E	2,3,10
3	To learn the vectors and techniques used in transgenic plant production	U,A	2,3,10
4	To understand and evaluate the applications of transgenic plants	U,K	2,3,10
5	To gain know how in metabolic engineering and production of secondary metabolites	Е	2,3,10

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	Conventional plant breeding. Introduction to cell and tissue culture; Tissue culture as a technique to produce novel plants and hybrids	3	1
	1.2	Tissue culture media (Composition and Preparation). Sterilization and agents of sterilization used in tissue culture labs.	3	1
	1.3	Initiation and maintenance of callus and suspension cultures; Single cell clones. Organogenesis; Somatic embryogenesis; Transfer and establishment of whole plants in soil. Shoot tip culture; Rapid clonal propagation and production of virus-free plants. Embryo culture and embryo rescue	5	1
1	1.4	Protoplast isolation, culture and fusion; Selection of hybrid cells and regeneration of hybrid plants; Symmetric and asymmetric hybrids, cybrids. Anther, pollen and ovary culture for production of haploid plants and homozygous lines. Somaclonal variation. In vitro mutation – Sexual incompatibility and male sterility. Cryopreservation; Slow growth and DNA banking for germplasm conservation	4	1,2
	2.1 M	Plant transformation technology – Basis of tumor formation; Hairy root; Features of Ti and Ri plasmids; Mechanisms of DNA transfer; Role of virulence genes; Use of Ti and Ri as vectors; Use of scaffold attachment regions;	3	2,3
	2.2	Binary vectors; Use of 35S and other promoters; Genetic markers; Use of reporter genes; Reporter gene with introns;	3	3
2	2.3	Methods of nuclear transformation; Viral vectors and their applications; Multiple gene transfers; Vector-less or direct DNA transfer; Particle bombardment, electroporation, microinjection. Transformation of monocots	5	3
	3.1	Applications of plant transformation. Herbicide resistance, insect resistance, Bt genes, Non Bt like protease inhibitors, alpha amylase inhibitor, virus resistance, coat protein mediated disease resistance, disease resistance, RIP, antifungal proteins, thionins, PR proteins, nematode resistance, abiotic stress	10	4

3	3.2	Molecular marker aided breeding –an introduction. Chloroplast transformation – Advantages, Vectors, Success with tobacco and potato	4	4,5
	Metabolic engineering and industrial products – Plant secondary metabolites, Control mechanisms and manipulation of phenylpropanoid pathway & shikimate pathway. Green house and green home technology		5	5
		PRACTICALS	30	
4	4.1	Plant tissue culture techniques Surface sterilization Callus culture Anther culture	16	1,2,3,4,5
	4.2	Embryo culture Protoplast isolation Somatic Hybridization	14	1,2,3,4,5
5		Teacher Specific Module		

Teaching and Learning Approach	ClassroomProcedure(Modeoftransaction) Lectures, group interactions, seminars, power point presentations. Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources				
	MODEOFASSESSMENT				
	A. ContinuousComprehensiveAssessment(CCA)				
	Theory Total = 25 marks				
	Test Papers/Assignments/Seminars				
Assessment	Practical Total= 15 marks				
Types	Systematic attendance and record submission				
Types	Skills in practical performance				
	Lab involvement, Viva				
	B. End Semester Examinations				
	Theory Total = 50 marks (Duration 1.5 hrs)				
	Short essays (5 out of 7) X 4= 20 marks				
	Short Questions (10 out of 12) X 2= 20 marks				
	Multiple Choice Questions ($1X 10$) = 10 marks				
	Practical Total =35 marks (Duration 2hrs)				
	Record= 10 marks				
	Viva= 5 marks				
	Practical Examination= 20 marks				

- 1. Chawla, H. S. Biotechnology in crop improvement.
- 2. Gupta, P. K. (Ed.). (2009). Plant Biotechnology. Rastogi Publications.
- 3. Hammond, J., et al Plant biotechnology. Springer Verlag.
- 4. Singh, B. D. (Ed.). (2009). Plant Biotechnology. Kalyani Publishers.
- 5. Swamy, S. N. Plant cell and tissue culture. Tata Mc.

SUGGESTED READINGS

- 1. Bhojwani, S. S., &Razdan, M. K. (1996). Plant tissue culture: Theory and practice. Elsevier.
- 2. George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant propagation by tissue culture. Springer Science & Business Media.
- 3. Giri, C. C., &Zaheer, M. (2019). Plant tissue culture: An introductory text. CRC Press.
- 4. Raghavan, V. (2004). Molecular embryology of flowering plants. Cambridge University Press.
- 5. Vasil, I. K., & Thorpe, T. A. (2010). Plant cell and tissue culture. Springer Science & Business Media.

MGU-UGP (HONOURS)

MahatmaGandhiUniversity Kottayam

Programme	BSc(Honours)Biological	Techniques	s and Spe	cimen Prep	aration	
Course Name	BIOTECHNOLOGY AND	D FORENSI	C MEDIO	CINE		
Typeof Course	DCE					
Course Code	MG8DCEBTS401	NIB				
Course Level	400 G					
Course Summary	The course provides a comprehensive overview of the intersection between biotechnology and forensic science. It includes topics such as DNA analysis, serological tests and analysis, forensic genetics, crime scene investigation techniques and the use of biotechnology in solving criminal cases. Students will learn how to collect and analyze biological evidence, interpret DNA profiles, and apply cutting-edge biotechnological methods in forensic investigations.					
Semester	VIII		Credits		4	T . 1
Course Details	LearningApproach	3	Tutorial 0	Practical 1	Others 0	Total Hours 75
Pre- requisites, if any	None MGU-UG	P (HO	NOU	RS)		

COURSE OUTCOMES (CO)

CO No.	ExpectedCourseOutcome 7 1112	Learning Domain*	PO No
1	To recognize the significance of immunoglobulins and lectins in forensic science	U,K	2,3,10
2	To gain understanding in the role played by components of blood in forensic science	U,E	2,3,10
3	To learn and apply techniques in biotechnology for solving cases in forensic science	U,A	1,2,3,10
4	To understand and apply techniques for interpreting and analyzing DNA sequences in forensic sciences.		2,3,8,10
5	To understand ethical and legal implications of using biotechnology in forensic science	A,S	1,2,3,8,10

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Immunoglobulin- types, physico-chemical properties and function, raising of anti-sera, Lectins - their forensic significance. Buffers and serological reagents, methods of sterilizationemployed for serological work.	4	1
	1.2	Composition of blood, Formation of blood, Blood groups –history, biochemistry and genetics of ABO, Rh, Mn and other systems. Methods of ABO bloodgrouping (absorption-inhibition, mixed agglutination and absorption elution) from blood stainsand other body fluids/stains viz. menstrual blood, semen, saliva, sweat, tear, pus, vomit, hair,bone, nail etc. Blood group specific ABH substances. Secretors and non- secretors	4	2
1	1.3	Blood groupsthat make racial distinctions. Lewis antigen, Bombay Blood groups. HLA antigens and HLAtyping. Role of sero-genetic markers in individualization and paternity disputes. Pitfalls in redcell typing.	4	1,2
	1.4 M	Determination of human and animal origin from bones, hair, flesh, nails, skin, teeth body tissue, fluids/ stains viz. blood, menstrual blood, semen, saliva, sweat, tear, pus, vomit, etc.,through immunodiffusion and immunoelectrophoresis, cross reactivity among closely relatedspecies. Individualization of blood stains: Determination of blood groups, sex age and racialorigin from dried bloodstains	5	2,3
	1.5	Red cell enzymes: Genetics, polymorphism and typing of PGM, GLO-I, ESD, EAP, AK, ADA etc. and their forensic significance. Serum proteins: Genetics, polymorphism and typing of - Hb, HP, Tf, Bf, C3 etc. and their forensic significance.	8	2,3
2	2.1	Concept of sequence variation - VNsTR, STRs, Mini STRs, SNPs. Detection techniques-RFLP, PCR amplifications, Amp-FLP, sequence polymorphism, Y-STR, Mitochondrial DNA.	5	3,4
	2.2	Population databases of DNA markers –STRs, Mini STRs, SNPs. New & Future technologies: Analysis of SNP, DNA chip technology- Microarrays, Cell free DNA,	5	3,4

		Synthetic DNA, Sequencing technologies		
	2.3	Evaluation of results, frequency estimate calculations and interpretation, Allele frequency determination, Match probability – Database, Quality control, Certification and Accreditation	4	2,3
	3.1	History of DNA profiling applications in disputed paternity cases, child swapping, missing person's identity, civil immigration, veterinary, wild life and agriculture cases. legalperspectives	3	5
3	3.2	Legal standards for admissibility of DNA profiling – procedural & ethical concerns, Status of development of DNA profiling in India & abroad. Limitations of DNA profiling	3	5
		PRACTICALS	30	
4	4.1	Serological tests for the diagnosis of microbial infections Agglutination and precipitation tests Immunodiffusion in gel ELISA DNA isolation Estimation of DNA Separation of DNA and RNA by Agarose gel electrophoresis PCR amplification of a desired fragment	30	1,2,3,4
5		Teacher Specific Module		

Teaching and Learning	Classroom Procedure (Mode of transaction)
Approach	Lectures, group interactions, group seminar, power point presentations, case
	studies. Teaching aids used- Audio Visual Presentation, Photographs, Internet
	Resources
	MODE OF ASSESSMENT
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 25 marks
	Test Papers/Assignments/Seminars
	Practical Total= 15 marks
	Systematic attendance and record submission
	Skills in practical performance, Lab involvement, Viva
	B. End Semester examination
	Theory Total = 50 marks (Duration 1.5 hrs)
	Short essays (5 out of 7) X 4= 20 marks

Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks

Practical Total =35 marks (Duration 2hrs)

Record= 10 marks Viva= 5 marks Practical Examination=20 marks

References

- 1. Budowle, B., & Moretti, T. R. (2004). Forensic DNA typing protocols. Humana Press.
- 2. Butler, J. M. (2005). Forensic DNA typing: Biology, technology, and genetics of STR markers (2nd ed.). Academic Press.
- 3. Goodwin, W., Linacre, A., &Hadi, S. (2018). An introduction to forensic genetics (2nd ed.). John Wiley & Sons.
- 4. Jamieson, A., & Taylor, C. (2003). Forensic science: An introduction to scientific and investigative techniques. CRC Press.
- 5. Walsh, P. S., &Buckleton, J. (2011). Forensic DNA evidence interpretation (2nd ed.). CRC Press.

SUGGESTED READINGS

- 1. Boorman, Kathleen E, Churchill; Blood group serology Livingstone, (1977)
- 2. Kobiinsky, Lawrence; DNA, John Wiley & Sons, (2005)
- 3. Kirby, Lorne; DNA fingerprinting, W H Freeman and Co, (1992)
- 4. Mcclintock, J. Thomas; Forensic DNA analysis, Lewis Publications, (2008)
- 5. Newton, David E.; DNA Evidence and Forensic Science, Viva books private limited, (2010)
- 6. Rudin, Norah; An Introduction to Forensic DNA Analysis, CRC Leviw Publishers, (2002)
- 7. Singh, Yashpal; DNA tests in Criminal Investigation Trial & Paternity Disputes, Alia Law Agency, (2006)
- 8. Burke, Terry; DNA Fingerprinting: Approaches and applications, BirkhauserVerlage, (1991)

Mahatma Gandhi University Kottayam

Programme	BSc(Honors) Biological	Techniques and Specimen Prep	aration		
Course Name	PLANT MICROBE INTI	ERACTION			
Type of Course	DCE				
Course Code	MG8DCEBTS402	AND			
Course Level	400	ANDA			
Course Summary	This course aims to give an insight into the consequences, on population and ecosystem level, of compatible and incompatible interactions, to understand infection process and control measures and to familiarize with the microbial production of plant metabolites.				
Semester	VIII	Credits	4 Total		
C		Lecture Tutorial Practical	Others		
Course Details	Learning Approach	3 0 1	0 75		
Pre- requisites, if any	None Tagging	अस्तमञ्जूते			

COURSEOUTCOMES(CO)

Learning CO Domain* **Expected Course Outcome** PO No. No 1 To discuss interactions between plants and microbes and the defense U,K 2,3,10 mechanism in host plant 2 To gain insight on genetics of host-pathogen interactions and U.E 2,3,10 resistance mechanism in plants. 3 To use methods to analyse plant diseases and biological methods of U,An 2,3,10 disease control To analyse plant microbe pathogenic and symbiotic interactions 4 An 2,3,10 To understand the role of microbes in developing plant immunity U,E 2,3,10 6 To gain knowledge on biopesticides and their role in pest control 2,3,10 U,K

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT Content for Classroom transaction (Units)

1.1 Different interfaces of interactions -soil-plant-microbe interactions leading to symbiotic (rhizobial and mycorrhizal), associative, endophytic and pathogenic interactions 1.2 General concepts of plant immunity. PAMP-triggered immunity (PTI) and Effector triggered immunity (ETI). Outer membrane vesicles (OMVs) and their involvement in plant immunity. The type III secretion system and hypersensitive response. 1.3 Genetic basis of plant defences. Quorum-sensing in bacteria and their role in plant defence mechanisms. Phytohormones and antibiotics as plant therapeutics. Plant pathogens and molecular basis of pathogenesis. Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. Basal and induced defence mechanisms. Pastoric Acquired Resistance (SAR) and Induced Systemic Resistance (SR), Recognition mechanism and signal transduction during plant - pathogen Virulence determinants of plant pathogenic bacteria-Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control; Bacillus thuringiensis-mode of action. Biocontrol agents—uses and practical constraints Biofungicide and bioherbicides 3.2 Plant growth promoting rhizobacteria. Use of plantmicrobe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in chancing erop productivity 5 Teacher Specific Module	Module	Units	Course description	Hrs 45	CO No.
1.2 immunity (PTI) and Effector triggered immunity (ETI). Outer membrane vesicles (OMVs) and their involvement in plant immunity. The type III secretion system and hypersensitive response. 1.3 Genetic basis of plant defences. Quorum-sensing in bacteria and their role in plant defence mechanisms. Phytohormones and antibiotics as plant therapeutics. 2.1 Plant pathogens and molecular basis of pathogenesis. Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. Basal and induced defence mechanisms. 2.2 Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen 2.3 Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control! Bacillus thuringiensis-mode of action. Biocontrol agents—uses and practical constraints Biofungicide and bioherbicides 3.2 Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity	1	1.1	interactions leading to symbiotic (rhizobial and mycorrhizal), associative, endophytic and pathogenic	5	1
1.3 Genetic basis of plant defences. Quorum-sensing in bacteria and their role in plant defence mechanisms. Phytohormones and antibiotics as plant therapeutics. 2.1 Plant pathogens and molecular basis of pathogenesis . Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. Basal and induced defence mechanisms. 2.2 Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen virulence determinants of plant pathogenic bacteria-Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control: Bacillus thuringiensis-mode of action. Biocontrol agents—uses and practical constraints Biofungicide and bioherbicides 3 Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 3.1 The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity		1.2	immunity (PTI) and Effector triggered immunity (ETI). Outer membrane vesicles (OMVs) and their involvement in plant immunity. The type III secretion	5	1
2.1 Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants. Basal and induced defence mechanisms. 2.2 Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen interaction Virulence determinants of plant pathogenic bacteria- Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control: Bacillus thuringiensis-mode of action. Biocontrol agents— uses and practical constraints Biofungicide and bioherbicides 3.2 Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 3. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity		1.3	Genetic basis of plant defences. Quorum-sensing in bacteria and their role in plant defence mechanisms.	7	1,2
2.2 Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen interaction 2.3 Virulence determinants of plant pathogenic bacteria-Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control: Bacillus thuringiensis-mode of action. Biocontrol agents—uses and practical constraints Biofungicide and bioherbicides Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4.1 The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity	,	2.1	.Genetics of host-pathogen interactions, resistance genes, resistance mechanisms in plants.	6	2,3,4
Virulence determinants of plant pathogenic bacteria- Enzymes, Toxins, pili, siderophores, secretion systems 3.1 Microbial pest control: Bacillus thuringiensis-mode of action. Biocontrol agents— uses and practical constraints Biofungicide and bioherbicides 3.2 Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 3.0 1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity	2	2.2	Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen	5	2,3,4
3.1 action. Biocontrol agents— uses and practical constraints Biofungicide and bioherbicides 3.2 Plant growth promoting rhizobacteria. Use of plant— microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 3.2 1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4.1 The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity		2.3	Virulence determinants of plant pathogenic bacteria-	5	3,4,5
Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and carbon (C) sequestration Practical Case study 1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity		3.1	action. Biocontrol agents- uses and practical constraints	6	5,6
1. The impact of plant-microbe interactions on soil health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity	3	3.2	Plant growth promoting rhizobacteria. Use of plant—microbe symbiosis for remediation of pollutants and	6	1,4,5
health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity			Practical Case study	30	
5 Teacher Specific Module		4.1	health and ecosystem functioning 2. The role of plant-associated bacteria in promoting plant stress tolerance 3. Endophytic bacteria and their impact on plant health and growth 4. The potential application of microbial inoculants in sustainable agriculture: a case study on biofertilizers 5. The role of plant growth-promoting bacteria in enhancing crop productivity	30	1,2,3,4,5,6
	5		Teacher Specific Module		

Teaching	Classroom Procedure (Mode of transaction)		
and	Lectures, group interactions, group seminar, power point presentations, case		
Learning	studies		
Approach	Teaching aids used- Audio Visual Presentation, Photographs, Internet Resources.		
	MODEOFASSESSMENT		
Assessment	A. Continuous Comprehensive Assessment (CCA)		
Types	Theory Total = 25 marks		
	Test Papers/Assignments/Seminars		
	Practical Total= 15 marks		
	Case study presentations and submission of reports		
	Chart/Visual presentations		
	GANDA		
	B. End Semester examination		
	Theory Total = 50 marks (Duration 1.5 hrs)		
	Short essays (5 out of 7) X 4= 20 marks		
	Short Questions (10 out of 12) X 2= 20 marks		
	Multiple Choice Questions $(1X 10) = 10$ marks		
	Practical Total =35 marks (Duration 2hrs)		
	Record= 10 marks		
	Viva= 5 marks		
	Examination based on Case study assigned= 20 marks		

- 1. Gillings, M., & Holmes, A. (2004). Plant microbiology. Bios Scientific publishers.
- 2. Huang, J-S. (2001). Plant pathogenesis and resistance: Biochemistry and physiology of plant-microbe interactions. Springer Verlag.
- 3. Jayaraj, S. Microbial control and pest management.
- 4. Kosuge, T., & Nester, E. W. (1989). Plant-microbe interactions: Molecular and genetic perspectives (Vols I-IV). McGraw Hill.
- 5. Lugtenberg, B. (Ed.). (2015). Principles of plant microbe interactions. Springer.
- 6. Paul, E. A. (2007). Soil microbiology, ecology, and biochemistry. Academic Press.
- 7. Rao, N. S. (2005). Soil microorganisms and plant growth. Oxford and IBH Publishing Co.
- 8. Stacey, G., & Keen, N. T. (1995). Plant-microbe interactions (Vols I-VI). Springer Science & Business Media.

9. Verma, D. P. S., & Kohn, T. H. (1984). Genes involved in microbe-plant interactions. Springer Verlag.

SUGGESTED READINGS

- 1. Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379-406.
- 2. Jones, J. D. G., &Dangl, J. L. (2006). Plant Pathogens and Integrated Defense Responses. Annual Review of Phytopathology, 45(1), 399-436.
- 3. Lugtenberg, B., & Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63(1), 541-556.
- 4. Mendes, R., Garbeva, P., &Raaijmakers, J. M. (2013). The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiology Reviews, 37(5), 634-663.
- 5. Van Loon, L. C., & Bakker, P. A. H. M. (2005). Induced Systemic Resistance as a Mechanism of Disease Suppression by Rhizobacteria. In Plant-Microbe Interactions (pp. 122-160). Springer, Dordrecht.

विद्या अस्तमञ्जूते

MGU-UGP (HONOURS)

Mahatma Gandhi University Kottayam

Programme	BSc (Honours) Biological	l Techniques and Specimen Pre	paration	
Course Name	MOLECULAR PHYLOGI	ENY		
Type of Course	DCE			
Course Code	MG8DCEBTS403	TUD		
Course Level	400	VIAD A		
Course Summary	phylogeny. The learner vanalysis in bioinformati	eals with the tools and technic will develop a fundamental und ics Models of nucleic acid su tools and submission tools for nu ry relationships	derstanding of bstitution, tree	sequence building
Semester	VIII	Credits	4	Total
Course Details	Learning Approach	Lecture Tutorial Practical 3 0 1	Others 0	Hours 75
Pre- requisites, if any	None Add 3	मन्द्रतसञ्जत		

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	ExpectedCourseOutcome	Learning Domain*	PO No.
1	To understand the concepts of evolution and the role of mutation in the emergence of life	U,K	2,3,10
2	To engage in the collection, analysis, and interpretation of genetic data from biological databases	U,S	2,3,10
3	To use bioinformatics tools and software to analyze and interpret genetic sequences.	E,A,An	2,3,9,10
4	To construct and interpret phylogenetic trees based on genetic data and submit sequences to databases	A,An	2,3,9,10
5	To apply the knowledge of sequence analysis in molecular phylogenetics and answer real world research questions	E,A,An	2,3,9,10

^{*}Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO
			45	No.
	1.1	Basic concepts of molecular evolution: Genetic information, population dynamics, evolution and speciation,	5	1
1	1.2	Molecular data as resources. Accessing databases for molecular phylogenetics, phylogenetic tree, methods for inferring phylogenetic trees, networking, RNA world	5	1,2
	1.3	Sequence databases and data base searches: Sequence databases, composite databases, database mirroring, and search tools	5	2
2	2.1	Concept of sequence Alignment, Scoring matrices: PAM &BLOSUM Alignment of Pairs of sequences: Dot Plot. Alignment Algorithms-Needleman and Wunsch Algorithm, Smith Waterman Algorithm. Search for Homologous sequences using BLAST & FASTA programs.	5	2,3
	2.2	Introduction to BLAST suite; BLAST N,BLASTP,BLASTX and TBLASTN	5	2,3
	2.3	Multiple Sequence Alignment: Dynamic Programming and progressive alignment. Tools: Clustal W from Expasy Website, T-Coffee, Mega,MUSCLE and COBALT	5	2,3
	3.1	Phylogenetic inference: Genetic distances and nuclear substitution models, phylogenetic inference based on distance methods- UPGMA, Neighbour Joining, Minimum Evolution, Least square	2	3,4
	3.2	Phylogenetic inference: Maximum Likelihood and Bayesian phylogenetic analysis, phylogenetic analysis based on parsimony,	4	3,4
3	3.3	Phylogenetic analysis using protein sequences, testing tree reliability – Bootstrapping and jackknifing	4	4
	3.4	Testing models and trees: Models of evolution and phylogeny reconstruction, model fit, likelihood ratio tests, Practising MEGA, Paup*, RaxML, Mr Bayes, J Model Test.	3	4,5
	3.5	Sequence submission tools- SEQUIN and BankIt	2	4
		PRACTICALS	30	
		Accessing databases and retrieving data NCBI,GENBANK,SWISSPROT,PDB, OMIM To find similarity between the given sequence of		2,3,4,5

4	4.1	protein in a database. 3. To find the similarity between the given protein sequence and a Database using FASTA program 4. To familiarize with the multiple sequence alignment tool CLUSTALW2and MEGA 5. To familiarize with the multiplesequence alignment tool T-COFFEE 6. To do Phylogenetic analysis and evolutionary tree construction of the given protein sequences using PHYLIP 7. Sequence submission using SEQUIN
5		Teaching Specific Module

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lectures, group interactions, group seminar, power point presentations, Hands on training in Bioinformatics tools and softwares Teaching aids used- Audio Visual Presentation, Internet Resources
Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory Total = 25 marks Test Papers/Assignments/Seminars Practical Total= 15 marks Practical ability to perform Bioinformatics work Skill in accessing molecular data and performing sequencing alignment Ability to find solutions to biological problems
	B. End Semester examination Theory Total = 50 marks (Duration 1.5 hrs) Short essays (5 out of 7) X 4= 20 marks Short Questions (10 out of 12) X 2= 20 marks Multiple Choice Questions (1X 10) = 10 marks Practical Total =35 marks (Duration 2hrs) Record= 10 marks Viva= 5 marks Bioinformatics Practical Examination= 20 marks

- 1. Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press.
- 2. Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.
- 3. Hall, BG. (2004) Phylogenetic Trees Made Easy: A How-To Manual, 2nd ed. Sinauer

- Associates, Inc.: Sunderland, M A.
- 4. Hartwell, LH, L Hood, ML Goldberg, AE Reynolds, LM Silver, RCVeres (2008) Genetics: From Genes to Genomes, 3rd Ed. McGraw-Hill: New York.
- 5. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.). Cold Spring Harbor Laboratory Press.
- 6. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.
- 7. The phylogenetic Handbook, 2nd Edition, Philippe Lemey, Marco Salemi, Anne Mieke Vandamme, Cambridge University Press.
- 8. Yang, Z. (2014). Molecular evolution: A statistical approach. Oxford University Press.

SUGGESTED READINGS

- 1. Baldauf, S. L. (2003). Phylogeny for the faint of heart: a tutorial. Trends in Genetics, 19(6), 345-351.
- 2. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.

MGU-UGP (HONOURS)

MahatmaGandhiUniversity Kottayam

Programme	BSc (Honours) Biologica	l Techniques and Specimen Prep	paration	
Course Name	GENOMICS, PROTEOM	IICS AND NANOTECHNOLOGY		
Type of Course	DCE			
Course Code	MG8DCEBTS404	WID:		
Course Level	400	AND A		
Course Summary	This introductory course on genomics, proteomics, and nanotechnology is to learn about genes, proteins, and nanoscale materials with the aim of providing students with a broad understanding of the cutting-edge research and applications involved in these rapidly advancing fields.			
Semester	VIII	Credits	4	Total
Course Details	Learning Approach	Lecture Tutorial Practical 3 0 1	Others 0	Hours 75
Pre- requisites, if any	None fagging	अस्तसञ्जते 🌓	·	•

COURSE OUTCOMES (CO) GU-UGP (HONOURS)

CO No.	Expected Course Outcome	Learning Domain*	PO No.
1	To understand the basic principles and concepts of genomics and proteomics	U,K	2,3,10
2	To develop the skills to analyze and interpret genomic and proteomic data.	U,E	1,2,3,10
3	To gain insights in the sequencing technologies employed in genomics and proteomics	U,A	2,3,9,10
4	To understand the basic principles in nanotechnology	U,K	2,3,10
5	To explore the applications and significance of nanotechnology	A,S	2,3,9,10

*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S) Interest(I) and Appreciation(Ap)

COURSECONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs 45	CO No.
	1.1	Organization of genome: Single sequence DNA, GC content, Intermediate repeat DNA, Highly repetitive DNA, CpGislands, Gene Families, Pseudogenes, Duplicated genes, SNPs, STS, Tandemly repeated genes. Non protein Coding genes, Split genes, Overlapping genes, Spacer regions, ORF's Cryptic genes.	5	1
1	1.2	Multigene Families in Eukaryotes, LINE's, SINE's, Transposons and retrotransposons Molecular markers DNA Fingerprinting & DNA Foot printing	5	1
	1.3	Physical Maps – Clone Maps, RH Maps, EST's, STS Maps, FISH (Fluroscent Insitu Hybridization) Genetic Maps History of sequencing, Early Strategies for sequencing. Maxam and Gilbert Sequencing Sanger's sequencing	5	1,2
	2.1	Human Genome Project: Timeline, Methods, Outcome, Applications, Advantages and Ethical issues. Making the Clone Map: Generating, Assembling and Finishing thesequence	5	1,2,3
2	2.2	Automated whole Genome shotgun sequencing), Next generation sequencing techniques, Introduction to NGS data analysis.	5	1,2,3
	2.3	Annotating genomes: Sequence annotation and bioinformatics tools for genomics and genome comparison; analyzing gene expression-DNA microarray-design, analysis and visualization of data. Application of DNA microarrays in prokaryotes, Microarray data analysis.Gene prediction in Prokaryotes and Eukaryotes, ORF prediction	5	2,3
	3.1	Classification of proteins, Protein separation & analysis; 2D Gel Electrophoresis, Liquid chromatography, Mass spectrometry. Protein structure determination with X-ray Crystallography & NMR spectroscopy.	2	1
3	3.2	Protein sequencingprotein expression profiling, protein - protein interactions	3	1,2,3
	3.3	Protein databases: UniProtKB/Swiss-Prot, Interpro, PIR, PDB, SCOP & CATH, Pro- Dom, PFAM; Protein visualization tools- Swiss PDB Viewer, Pymol, Expasy proteomic tools	3	2, 3

Fundamental Concepts in Nanotechnology: Foundations in nanosciences- introduction nanometre, nanoscale-quantum confinement in	
nanometre, nanoscale-quantum confinement in	
monomotoriols	
nanomaterials Rationale behind the downsizing of the materials	
Prime materials in nanotechnology-nanomaterials:	
unique properties and defects in nanocrystalline	
3.4 materials.	
Nano Fabrication: Introduction-synthesis of	
nanopowders using top down and bottom up	4
methods-top down fabrication methods-arc discharge method-laser ablation method –ball	
milling-inert gas condensation-bottom up fabrication	
methods	
STM (principle, construction and working,	
advantages and disadvantages) - Raman	
spectroscopy (principle, construction and working)- Nanoindentation	
Nanoscale Characterization:Introduction-XRD	
(principle and theory)—SEM (principle, construction	
and working, advantages and disadvantages) -TEM 2	4
(principle, construction and working, advantages and	7
disadvantages)-AFM (principle, construction and working, advantages and disadvantages)	
Applications of panotechnology in cancer	
3.6 Agriculture, Medicine, Communication technology, 2	5
Biotechnology and Bioinformatics.	
PRACTICALS 30	
1. Gene Structure and Functionprediction.	
4 2. ORFPrediction 3. Sequence SimilaritySearching	
4. Multiple SequenceAlignment	1,2,3
5. Analysis of Nucleic AcidSequences	
6. Bioinformatics tools used in Proteomics	
5 Teacher Specific Module	
~ y ttuvud	

Teaching and	ClassroomProcedure(Modeoftransaction)
Learning Approach	Lectures, group interactions, group seminar, power point presentations, case studies, approaches in bioinformatics using tools in internet
	Teaching aids used- Audio Visual Presentation, Internet Resources

	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
Assessment	Theory Total = 25 marks
	Test Papers/Assignments/Seminars
Types	Practical Total= 15 marks
	Skill sets in Bioinformatics
	Case Studies of real time applications of nanotechnology/
	Submission of Report and Presentation
	B. End Semester examination
	Theory Total = 50 marks (Duration 1.5 hrs)
	Short essays (5 out of 7) X 4= 20 marks
	Short Questions (10 out of 12) X 2= 20 marks
	Multiple Choice Questions $(1X 10) = 10$ marks
	Practical Total =35 marks (Duration 2hrs)
	Record= 10 marks
	Viva= 5 marks
	Practical Examination= 20 marks

- 1. Albert, R. (2013). Network biology: Understanding the cell's functional organization. New York, NY: Garland Science.
- 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular biology of the cell (6th ed.). New York, NY: Garland Science.
- 3. Bhatia, R. (2015). Nanotechnology: Principles and applications. Boca Raton, FL: CRC Press.
- 4. Brown, T. A. (2012). Genomes (3rd ed.). New York, NY: Oxford University Press.
- 5. Feller, G. (2014). The extremophiles handbook. Berlin, Germany: Springer.
- 6. Klug, W. S., Cummings, M. R., Spencer, C. A., &Palladino, M. A. (2017). Concepts of genetics (11th ed.). Boston, MA: Pearson.
- 7. Koonin, E. V. (2016). The logic of chance: The nature and origin of biological evolution. Upper Saddle River, NJ: Pearson.
- 8. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). New York, NY: W. H. Freeman.
- 9. Rastogi, R. (2016). Proteomics: Principles and techniques. New Delhi, India: New Age International.
- 10. Storici, F. (2012). Molecular biology of the cell: Problems book. New York, NY: Garland Science.

SUGGESTED READINGS

- 1. Bhushan, B. (2002). Nanotribology and Nanomechanics An introduction. Springer.
- 2. Misener, S., &Krawetz, S. A. (2000). Bioinformatics Methods and Protocols. Humana Press.
- 3. Rastogi, S. C., Mendiratta, N., &Rastogi, P. (2004). Bioinformatics Methods and Applications. Prentice Hall of India.
- 4. Mount, D. W. (2002). Bioinformatics Sequence and Genome Analysis. Cold Spring Harbor Lab Press.

MGU-UGP (HONOURS)

SCHEME OF EVALUATION FOR INTERNSHIP

A. INTERNAL EVALUATION - 15 MARKS

Sl.No	Head	Marks
1	Content & relevance of Dissertation as evidenced from work diary	8
2	Presentation	4
3	Viva	3

B. END SEMESTER EXAMINATION - 35 MARKS

Sl No	Head	Marks
1	Content & relevance of Dissertation as evidenced from work diary	20
2	Presentation	10
3	Viva	5

MGU-UGP (HONOURS)

EVALUATION OF PROJECT IN THE EIGHTH SEMESTER

Evaluation of Project

The project should contain:

- 1. Title page/Front page (Certified by the HOD)
- 2. Declaration by the candidate
- 3. Certificate attested by the Supervising teacher
- 4. Acknowledgement, if any
- 5. Table of contents
- 6. Abbreviation, if any
- 7. Abstract
- 8. Introduction & Review of Literature
- 9. Methodology
- 10. Results and Discussion
- 11. Summary and Conclusion
- 12. References

The project report submitted must be duly attested by the Supervising Teacher and certified by the Head of the Department. There shall be a pre submission presentation and evaluation of the project in the middle of the eighth semester. **Mark for internal evaluation is 60**.

Scheme for internal evaluation

Sl No	Component MGU-UGP (HONOUR	Marks
1	Topic/Area selected (relevance)	5
2	Experimentation/Data collection	15
3	Punctuality 500 800 800 800 800 800 800 800 800 800	5
4	Compilation	10
5	Content	10
6	Presentation	15
	TOTAL	60

The end semester evaluation of the Project shall be according to the Scheme given below.

Sl No	Component	Marks
1	Originality of approach, Introduction & aim of the project/objectives, Organization and Precision of Printed work	10
2	Relevance of the Topic	10

3	Review of Literature	10
4	Methodology	20
5	Involvement	10
6	Result and discussion: tabulation of data, presentation of	20
	figure/graphs, clarity of explanations etc.	
7	Bibliography in correct format	10
8	Conclusions/ Applications to the society	10
9	Presentation of Report and Viva voce	30
10	Exceptional quality of the project	10
	TOTAL	140

MGU-UGP (HONOURS)
Syllabus